Siervo M, Montagnese C, Mathers JC, Soroka KR, Stephan BC, Wells JC. Sugar consumption and global prevalence of obesity and hypertension: an ecological analysis. Public Health Nutr. 2014;17:587–96.
Article
PubMed
Google Scholar
Stanhope KL. Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit Rev Clin Lab Sci. 2016;53:52–67.
Article
CAS
PubMed
Google Scholar
Martyn DM, Nugent AP, McNulty BA, O'Reilly E, Tlustos C, Walton J, Flynn A, Gibney MJ. Dietary intake of four artificial sweeteners by Irish pre-school children. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2016;33:592–602.
CAS
PubMed
Google Scholar
Li XE, Lopetcharat K, Drake MA. Parents' And children's acceptance of skim chocolate milks sweetened by monk fruit and stevia leaf extracts. J Food Sci. 2015;80:S1083–92.
Article
CAS
PubMed
Google Scholar
Fujimaru T, Park JH, Lim J. Sensory characteristics and relative sweetness of tagatose and other sweeteners. J Food Sci. 2012;77:S323–8.
Article
CAS
PubMed
Google Scholar
Chattopadhyay S, Raychaudhuri U, Chakraborty R. Artificial sweeteners - a review. J Food Sci Technol. 2014;51:611–21.
Article
CAS
PubMed
Google Scholar
Patil S, Ravi R, Saraswathi G, Prakash M. Development of low calorie snack food based on intense sweeteners. J Food Sci Technol. 2014;51:4096–101.
Article
CAS
PubMed
Google Scholar
Nahon DF, Roozen JP, de Graaf C. Sensory evaluation of mixtures of maltitol or aspartame, sucrose and an orange aroma. Chem Senses. 1998;23:59–66.
Article
CAS
PubMed
Google Scholar
Ceunen S, Geuns JM. Steviol glycosides: chemical diversity, metabolism, and function. J Nat Prod. 2013;76:1201–28.
Article
CAS
PubMed
Google Scholar
US Food, Drug Administration. High-Intensity Sweeteners [http://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm397716.htm (last accessed 08 May 2017).]
Roberts A. The safety and regulatory process for low calorie sweeteners in the United States. Physiol Behav. 2016;
Mortensen A. Sweeteners permitted in the EuropeanUnion: safety aspects. Scand J Food Nutr. 2006;50:104–16.
Article
Google Scholar
Revised exposure assessment for steviol glycosides for the proposed uses as a food additive. [Available from: http://www.efsa.europa.eu/de/efsajournal/pub/1972].
Choudhary AK, Lee YY. Neurophysiological symptoms and aspartame: what is the connection? Nutr Neurosci. 2017:1–11.
Sylvetsky Meni AC, Swithers SE, Rother KI. Positive association between artificially sweetened beverage consumption and incidence of diabetes. Diabetologia. 2015;58:2455–6.
Article
PubMed
PubMed Central
Google Scholar
Schernhammer ES, Bertrand KA, Birmann BM, Sampson L, Willett WC, Feskanich D. Consumption of artificial sweetener- and sugar-containing soda and risk of lymphoma and leukemia in men and women. Am J Clin Nutr. 2012;96:1419–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peters MD, Godfrey CM, Khalil H, McInerney P, Parker D, Soares CB. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc. 2015;13:141–6.
Article
PubMed
Google Scholar
Schmucker C, Motschall E, Antes G, Meerpohl JJ. Methods of evidence mapping. A systematic review. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2013;56:1390–7.
Article
CAS
PubMed
Google Scholar
Colquhoun HL, Levac D, O'Brien KK, Straus S, Tricco AC, Perrier L, Kastner M, Moher D. Scoping reviews: time for clarity in definition, methods, and reporting. J Clin Epidemiol. 2014;67:1291–4.
Article
PubMed
Google Scholar
Ulbricht C, Isaac R, Milkin T, Poole EA, Rusie E, Grimes Serrano JM, Weissner W, Windsor RC, Woods J. An evidence-based systematic review of stevia by the natural standard research collaboration. Cardiovasc Hematol Agents Med Chem. 2010;8:113–27.
Article
CAS
PubMed
Google Scholar
Onakpoya IJ, Heneghan CJ. Effect of the natural sweetener, steviol glycoside, on cardiovascular risk factors: a systematic review and meta-analysis of randomised clinical trials. Eur J Prev Card. 2015;22:1575–87.
Article
Google Scholar
Brown RJ, de Banate MA, Rother KI. Artificial sweeteners: a systematic review of metabolic effects in youth. Int J Pediatr Obes. 2010;5:305–12.
Article
PubMed
PubMed Central
Google Scholar
Wiebe N, Padwal R, Field C, Marks S, Jacobs R, Tonelli M. A systematic review on the effect of sweeteners on glycemic response and clinically relevant outcomes. BMC Med. 2011;9
Romo-Romo A, Aguilar-Salinas CA, Brito-Cordova GX, Diaz RAG, Valentin DV, Almeda-Valdes P. Effects of the non-nutritive sweeteners on glucose metabolism and appetite regulating hormones: systematic review of observational prospective studies and clinical trials. PLoS One. 2016;11
Anderson GH, Saravis S, Schacher R, Zlotkin S, Leiter LA. Aspartame: effect on lunch-time food intake, appetite and hedonic response in children. Appetite. 1989;13:93–103.
Article
CAS
PubMed
Google Scholar
Anton SD, Martin CK, Han H, Coulon S, Cefalu WT, Geiselman P, Williamson DA. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite. 2010;55:37–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellissimo N, Pencharz PB, Thomas SG, Anderson GH. Effect of television viewing at mealtime on food intake after a glucose preload in boys. Ped Res. 2007;61:745–9.
Article
Google Scholar
Bellissimo N, Thomas SG, Goode RC, Anderson GH. Effect of short-duration physical activity and ventilation threshold on subjective appetite and short-term energy intake in boys. Appetite. 2007;49:644–51.
Article
PubMed
Google Scholar
Beridot-Therond ME, Arts I, Fantino M, De La Gueronniere V. Short-term effects of the flavour of drinks on ingestive behaviours in man. Appetite. 1998;31:67–81.
Article
CAS
PubMed
Google Scholar
Birch LL, McPhee L, Sullivan S. Children's Food intake following drinks sweetened with sucrose or aspartame: time course effects. Physiol Behav. 1989;45:387–95.
Article
CAS
PubMed
Google Scholar
Black RM, Leiter LA, Anderson GH. Consuming aspartame with and without taste: differential effects on appetite and food intake of young adult males. Physiol Behav. 1993;53:459–66.
Article
CAS
PubMed
Google Scholar
Branton A, Akhavan T, Gladanac B, Pollard D, Welch J, Rossiter M, Bellissimo N. Pre-meal video game playing and a glucose preload suppress food intake in normal weight boys. Appetite. 2014;83:256–62.
Article
PubMed
Google Scholar
Bryant CE, Wasse LK, Astbury N, Nandra G, McLaughlin JT. Non-nutritive sweeteners: no class effect on the glycaemic or appetite responses to ingested glucose. Eur J Clin Nutr. 2014;68:629–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carvalho P, Sousa M, Barros R, Padrao P, Moreira P, Teixeira V. Impact of morning ingestion of sugary and sweetened beverages on energy and fluid intake throughout day. Ann Nutr Metab. 2013;63:1448–9.
Google Scholar
Cuomo R, Savarese MF, Sarnelli G, Nicolai E, Aragri A, Cirillo C, Vozzella L, Zito FP, Verlezza V, Efficie E, Buyckx M. The role of a pre-load beverage on gastric volume and food intake: comparison between non-caloric carbonated and non-carbonated beverage. Nutr J. 2011;10:114.
Article
CAS
PubMed
PubMed Central
Google Scholar
DellaValle DM, Roe LS, Rolls BJ. Does the consumption of caloric and non-caloric beverages with a meal affect energy intake? Appetite. 2005;44:187–93.
Article
PubMed
Google Scholar
Flood JE, Roe LS, Rolls BJ. The effect of increased beverage portion size on energy intake at a meal. J Am Diet Assoc. 2006;106:1984–90. discussion 90
Article
PubMed
Google Scholar
Ford HE, Peters V, Martin NM, Sleeth ML, Ghatei MA, Frost GS, Bloom SR. Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. Eur J Clin Nutr. 2011;65:508–13.
Article
CAS
PubMed
Google Scholar
Holt SH, Sandona N, Brand-Miller JC. The effects of sugar-free vs sugar-rich beverages on feelings of fullness and subsequent food intake. Int J Food Sci Nutr. 2000;51:59–71.
Article
CAS
PubMed
Google Scholar
King NA, Appleton K, Rogers PJ, Blundell JE. Effects of sweetness and energy in drinks on food intake following exercise. Physiol Bahav. 1999;66:375–9.
Article
CAS
Google Scholar
Lavin JH, French SJ, Read NW. The effect of sucrose- and aspartame-sweetened drinks on energy intake, hunger and food choice of female, moderately restrained eaters. Int J Obes. 1997;21:37–42.
Article
CAS
Google Scholar
Maersk M, Belza A, Holst JJ, Fenger-Gron M, Pedersen SB, Astrup A, Richelsen B. Satiety scores and satiety hormone response after sucrose-sweetened soft drink compared with isocaloric semi-skimmed milk and with non-caloric soft drink: a controlled trial. Eur J Clin Nutr. 2012;66:523–9.
Article
CAS
PubMed
Google Scholar
Melanson KJ, Westerterp-Plantenga MS, Campfield LA, Saris WHM. Blood glucose and meal patterns in time-blinded males, after aspartame, carbohydrate, and fat consumption, in relation to sweetness perception. Brit J Nutr. 1999;82:437–46.
CAS
PubMed
Google Scholar
Monneuse MO, Bellisle F, Louis-Sylverstre J. Responses to an intense sweetener in humans: immediate preference and delayed effects on intake. Physiol Bahav. 1991;49:325–30.
Article
CAS
Google Scholar
Naismith DJ, Rhodes C. Adjustment in energy intake following the covert removal of sugar from the diet. J Human Nutr Diet. 1995;8:167–75.
Article
Google Scholar
Rodin J. Comparative effects of fructose, aspartame, glucose, and water preloads on calorie and macronutrient intake. Am J Clin Nutr. 1990;51:428–35.
CAS
PubMed
Google Scholar
Rogers PJ, Carlyle JA, Hill AJ, Blundell JE. Uncoupling sweet taste and calories: comparison of the effects of glucose and three intense sweeteners on hunger and food intake. Physiol Bahav. 1988;43:547–52.
Article
CAS
Google Scholar
Rogers PJ, Burley VJ, Alikhanizadeh LA, Blundell JE. Postingestive inhibition of food intake by aspartame: importance of interval between aspartame administration and subsequent eating. Physiol Behav. 1995;57:489–93.
Article
CAS
PubMed
Google Scholar
Rogers PJ, Blundell JE. Separating the actions of sweetness and calories: effects of saccharin and carbohydrates on hunger and food intake in human subjects. Physiol Behav. 1989;45:1093–9.
Article
CAS
PubMed
Google Scholar
Rolls BJ, Hetherington M, Laster LJ. Comparison of the effects of aspartame and sucrose on appetite and food intake. Appetite. 1988;11(Suppl 1):62–7.
Article
CAS
PubMed
Google Scholar
Van Engelen M, Armstrong T, Rossiter M, Eskritt M, Bellissimo N. The effect of sugars in solution on subjective appetite and short-term food intake in normal weight boys. FASEB J. 2012;26
Casperson SL, Johnson L, Roemmich JN. The relative reinforcing value of sweet versus savory snack foods after consumption of sugar- or non-nutritive sweetened beverages. Appetite. 2017;112:143–9.
Article
PubMed
Google Scholar
Gadah NS, Brunstrom JM, Rogers PJ. Cross-over studies underestimate energy compensation: the example of sucrose-versus sucralose-containing drinks. Appetite. 2016;107:398–405.
Article
PubMed
Google Scholar
Patel BP, Hamilton JK, Vien S, Thomas SG, Anderson GH. Pubertal status, pre-meal drink composition, and later meal timing interact in determining children's appetite and food intake. Appl Physiol Nutr Metab. 2016;41:924–30.
Article
CAS
PubMed
Google Scholar
Sylvetsky AC, Brown RJ, Blau JE, Walter M, Rother KI. Hormonal responses to non-nutritive sweeteners in water and diet soda. Nutr Metab. 2016;13:71.
Article
Google Scholar
Tey SL, Salleh NB, Henry J, Forde CG. Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int J Obes. 2017;41:450–7.
Article
CAS
Google Scholar
Black RM, Tanaka P, Leiter LA, Anderson GH. Soft drinks with aspartame: effect on subjective hunger, food selection, and food intake of young adult males. Physiol Behav 1991;49:803-10.
Blackburn GL, Kanders BS, Lavin PT, Keller SD, Whatley J. The effect of aspartame as part of a multidisciplinary weight-control program on short- and long-term control of body weight. Am J Clin Nutr. 1997;65:409–18.
CAS
PubMed
Google Scholar
Canty DJ, Chan MM. Effects of consumption of caloric vs noncaloric sweet drinks on indices of hunger and food consumption in normal adults. Am J Clin Nutr. 1991;53:1159–64.
CAS
PubMed
Google Scholar
Drewnowski A, Massien C, Louis-Sylvestre J, Fricker J, Chapelot D, Apfelbaum M. Comparing the effects of aspartame and sucrose on motivational ratings, taste preferences, and energy intakes in humans. Am J Clin Nutr. 1994;59:338–45.
CAS
PubMed
Google Scholar
Raben A, Moller BK, Flint A, Vasilaras TH, Moller AC, Holst JJ, Astrup A. Increased postprandial glycaemia, insulinemia, and lipidemia after 10 weeks' sucrose-rich diet compared to an artificially sweetened diet: a randomised controlled trial. Food Nutr Res. 2011;55
Reid M, Hammersley R, Hill AJ, Skidmore P. Long-term dietary compensation for added sugar: effects of supplementary sucrose drinks over a 4-week period. Brit J Nutr. 2007;97:193–203.
Article
CAS
PubMed
Google Scholar
Rolls BJ, Kim S, Fedoroff IC. Effects of drinks sweetened with sucrose or aspartame on hunger, thirst and food intake in men. Physiol Behav. 1990;48:19–26.
Article
CAS
PubMed
Google Scholar
Ruyter JC, Olthof MO, Kuijper LDJ, Liem G, Seidell JC, Katan MB. Short-term satiety and long-term weight effects of sugarfree and sugar-sweetened beverages in children. Obesity facts. 2013;6:33.
Google Scholar
Mattes R. Effects of aspartame and sucrose on hunger and energy intake in humans. Physiol Behav. 1990;47:1037–44.
Article
CAS
PubMed
Google Scholar
Ryan-Harshman M, Leiter LA, Anderson GH. Phenylalanine and aspartame fail to alter feeding behavior, mood and arousal in men. Physiol Behav. 1987;39:247–53.
Article
CAS
PubMed
Google Scholar
Tordoff MG, Alleva AM. Effect of drinking soda sweetened with aspartame or high-fructose corn syrup on food intake and body weight. Am J Clin Nutr. 1990;51:963–9.
CAS
PubMed
Google Scholar
Van Wymelbeke V, Beridot-Therond ME, de La Gueronniere V, Fantino M. Influence of repeated consumption of beverages containing sucrose or intense sweeteners on food intake. Eur J Clin Nutr. 2004;58:154–61.
Article
PubMed
CAS
Google Scholar
Wilson JF. Lunch eating behavior of preschool children. Effects of age, gender, and type of beverage served. Physiol Behav. 2000;70:27–33.
Article
CAS
PubMed
Google Scholar
Wilson JF. Does type of milk beverage affect lunchtime eating patterns and food choice by preschool children? Appetite. 1994;23:90–2.
Article
CAS
PubMed
Google Scholar
Cullen M, Nolan J, Cullen M, Moloney M, Kearney J, Lambe J, Gibney MJ. Effect of high levels of intense sweetener intake in insulin dependent diabetics on the ratio of dietary sugar to fat: a case-control study. Eur J Clin Nutr. 2004;58:1336–41.
Article
CAS
PubMed
Google Scholar
Gadah NS, Kyle LA, Smith JE, Brunstrom JM, Rogers PJ. No difference in compensation for sugar in a drink versus sugar in semi-solid and solid foods. Physiol Behav. 2016;156:35–42.
Article
CAS
PubMed
Google Scholar
Hill SE, Prokosch ML, Morin A, Rodeheffer CD. The effect of non-caloric sweeteners on cognition, choice, and post-consumption satisfaction. Appetite. 2014;83:82–8.
Article
PubMed
Google Scholar
Hammersley R, Reid M, Ballantyne C, Duffy M. Obese women partially compensate for sucrose added to the diet, without weight gain, over 28 days. Proc Nutr Soc. 2011;70(6):E384.
Article
Google Scholar
Porikos KP, Booth G, Van Itallie TB. Effect of covert nutritive dilution on the spontaneous food intake of obese individuals: a pilot study. Am J Clin Nutr. 1977;30:1638–44.
CAS
PubMed
Google Scholar
Ballantyne CJ, Hammersley R, Reid M. Effects of sucrose added blind to the diet over eight weeks on body mass and mood in men. Appetite. 2011;57:S3.
Article
Google Scholar
Peters JC, Wyatt HR, Foster GD, Pan Z, Wojtanowski AC, Vander Veur SS, Herring SJ, Brill C, Hill JO. The effects of water and non-nutritive sweetened beverages on weight loss during a 12-week weight loss treatment program. Obesity (Silver Spring, Md). 2014;22:1415–21.
Article
Google Scholar
Piernas C, Tate DF, Xiaoshan W, Popkin BM. Does diet-beverage intake affect dietary consumption patterns? Results from the choose healthy options consciously everyday (CHOICE) randomized clinical trial. Am J Clin Nutr. 2013;97:604–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porikos KP, Hesser MF, van Itallie TB. Caloric regulation in normal-weight men maintained on a palatable diet of conventional foods. Physiol Behav. 1982;29:293–300.
Article
CAS
PubMed
Google Scholar
Turner-McGrievy G, Wang X, Popkin B, Tate DF. Tasting profile affects adoption of caloric beverage reduction in a randomized weight loss intervention. Obes Sci Pract. 2016;2:392–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deighton K, Duckworth L, Matu J, Suter M, Fletcher C, Stead S, Ali S, Gunby N, Korsness K. Mouth rinsing with a sweet solution increases energy expenditure and decreases appetite during 60 min of self-regulated walking exercise. Appl Physiol Nutr Metab. 2016;41:1255–61.
Article
CAS
PubMed
Google Scholar
Gibson SA, Horgan GW, Francis LE, Gibson AA, Stephen AM. Low calorie beverage consumption is associated with energy and nutrient intakes and diet quality in British adults. Nutrients. 2016;8:02.
Article
CAS
Google Scholar
Nissensohn M, Sánchez-Villegas A, Serra-Majem L. Beverage consumption habits amongst the Spanish population: association with total water and energy intake. Findings of the ANIBES study Revista de Neurologia. 2016;62:42.
Google Scholar
Berry C, Brusick D, Cohen SM, Hardisty JF, Grotz VL, Williams GM. Sucralose non-carcinogenicity: a review of the scientific and regulatory rationale. Nutr Cancer. 2016;68:1247–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olivier B, Serge AH, Catherine A, Jacques B, Murielle B, Marie-Chantal CL, Sybil C, Jean-Philippe G, Sabine H, Esther K, et al. Review of the nutritional benefits and risks related to intense sweeteners.[Erratum appears in Arch Public Health. 2015;73:49; PMID: 26500771]. Archives of Public Health. 2015;73:41.
Andreatta MM, Munoz SE, Lantieri MJ, Eynard AR, Navarro A. Artificial sweetener consumption and urinary tract tumors in Cordoba. Argentina Prev Med. 2008;47:136–9.
Article
CAS
PubMed
Google Scholar
Andreatta MM, Navarro A, Eynard AR. Urinary tract tumors, biology and risk for artificial sweeteners use with particular emphasis on some south American countries. Prev Med. 2008;4:185–95.
CAS
Google Scholar
Asal NR, Risser DR, Kadamani S, Geyer JR, Lee ET, Cherng N. Risk factors in renal cell carcinoma: I. Methodology, demographics, tobacco, beverage use, and obesity. Cancer Detect Prev. 1988;11:359–77.
CAS
PubMed
Google Scholar
Bravo MP, Del Rey-Calero J, Conde M. Risk factors of bladder cancer in Spain. Neoplasma. 1987;34:633–7.
CAS
PubMed
Google Scholar
Cartwright RA, Adib R, Glashan R, Gray BK. The epidemiology of bladder cancer in West Yorkshire. A preliminary report on non-occupational aetiologies. Carcinogenesis. 1981;2:343–7.
Article
CAS
PubMed
Google Scholar
Hoover RN, Strasser PH. Artificial sweeteners and human bladder cancer. Preliminary results Lancet. 1980;1:837–40.
Article
CAS
PubMed
Google Scholar
Howe GR, Burch JD, Miller AB, Cook GM, Esteve J, Morrison B, Gordon P, Chambers LW, Fodor G, Winsor GM. Tobacco use, occupation, coffee, various nutrients, and bladder cancer. J Natl Cancer Inst. 1980;64:701–13.
CAS
PubMed
Google Scholar
Kantor AF, Hartge P, Hoover RN, Fraumeni JF Jr. Familial and environmental interactions in bladder cancer risk. Int J Cancer. 1985;35:703–6.
Article
CAS
PubMed
Google Scholar
Mommsen S, Aagaard J, Sell A. A case-control study of female bladder cancer. Eur J Cancer Clin Oncol. 1983;19:725–9.
Article
CAS
PubMed
Google Scholar
Sullivan JW. Epidemiologic survey of bladder cancer in greater New Orleans. J Urol. 1982;128:281–3.
Article
CAS
PubMed
Google Scholar
Yu Y, Hu J, Wang PP, Zou Y, Qi Y, Zhao P, Xe R. Risk factors for bladder cancer: a case-control study in northeast China.[erratum appears in Eur J cancer Prev 1998 Apr;7(2):171]. Eur J Cancer Prev. 1997;6:363–9.
Article
CAS
PubMed
Google Scholar
Connolly JG, Rider WD, Rosenbaum L, Chapman JA. Relation between the use of artificial sweeteners and bladder cancer. CMAJ. 1978;119:408.
CAS
Google Scholar
Goodman MT, Morgenstern H, Wynder EL. A case-control study of factors affecting the development of renal cell cancer. Am J Epidemiol. 1986;124:926–41.
Article
CAS
PubMed
Google Scholar
Iscovich J, Castelletto R, Esteve J, Munoz N, Colanzi R, Coronel A, Deamezola I, Tassi V, Arslan A. Tobacco smoking, occupational exposure and bladder cancer in Argentina. Int J Cancer. 1987;40:734–40.
Article
CAS
PubMed
Google Scholar
Kessler II, Clark JP. Saccharin, cyclamate, and human bladder cancer. No evidence of an association. JAMA. 1978;240:349–55.
Article
CAS
PubMed
Google Scholar
Kobeissi LH, Yassine IA, Jabbour ME, Moussa MA, Dhaini HR. Urinary bladder cancer risk factors: a Lebanese case- control study. APJCP. 2013;14:3205–11.
PubMed
Google Scholar
Moller-Jensen O, Knudsen JB, Sorensen BL, Clemmesen J. Artificial sweeteners and absence of bladder cancer risk in Copenhagen. Int J Cancer. 1983;32:577–82.
Article
CAS
PubMed
Google Scholar
Momas I, Daures JP, Festy B, Bontoux J, Gremy F. Relative importance of risk factors in bladder carcinogenesis: some new results about Mediterranean habits. Cancer Causes Control. 1994;5:326–32.
Article
CAS
PubMed
Google Scholar
Morgan RW, Jain MG. Bladder cancer: smoking, beverages and artificial sweeteners. CMAJ. 1974;111:1067–70.
CAS
Google Scholar
Morrison AS, Buring JE. Artificial sweeteners and cancer of the lower urinary tract. N Engl J Med. 1980;302:537–41.
Article
CAS
PubMed
Google Scholar
Morrison AS, Verhoek WG, Leck I, Aoki K, Ohno Y, Obata K. Artificial sweeteners and bladder cancer in Manchester, U.K., and Nagoya, Japan. Br J Cancer. 1982;45:332–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Najem GR, Louria DB, Seebode JJ, Thind IS, Prusakowski JM, Ambrose RB, Fernicola AR. Life time occupation, smoking, caffeine, saccharine, hair dyes and bladder carcinogenesis. Int J Epidemiol. 1982;11:212–7.
Article
CAS
PubMed
Google Scholar
Nomura AM, Kolonel LN, Hankin JH, Yoshizawa CN. Dietary factors in cancer of the lower urinary tract. Int J Cancer. 1991;48:199–205.
Article
CAS
PubMed
Google Scholar
Ohno Y, Aoki K, Obata K, Morrison AS. Case-control study of urinary bladder cancer in metropolitan Nagoya. Natl Cancer Inst Monogr. 1985;69:229–34.
CAS
PubMed
Google Scholar
Radosavljevic V, Jankovic S, Marinkovic J, Djokic M. Some habits as risk factors for bladder cancer. J BUON. 2001;6:435–9.
Google Scholar
Risch HA, Burch JD, Miller AB, Hill GB, Steele R, Howe GR. Dietary factors and the incidence of cancer of the urinary bladder. Am J Epidemiol. 1988;127:1179–91.
Article
CAS
PubMed
Google Scholar
Schulte PA, Ringen K, Hemstreet GP, Altekruse EB, Gullen WH, Tillett S, Allsbrook WC Jr, Crosby JH, Witherington R, Stringer W, et al. Risk factors for bladder cancer in a cohort exposed to aromatic amines. Cancer. 1986;58:2156–62.
Article
CAS
PubMed
Google Scholar
Silverman DT, Hoover RN, Swanson GM. Artificial sweeteners and lower urinary tract cancer: hospital vs. population controls. Am J Epidemiol. 1983;117:326–34.
Article
CAS
PubMed
Google Scholar
Simon D, Yen S, Cole P. Coffee drinking and cancer of the lower urinary tract. J Natl Cancer Inst. 1975;54:587–91.
CAS
PubMed
Google Scholar
Wynder EL, Stellman SD. Artificial sweetener use and bladder cancer: a case-control study. Science. 1980;207:1214–6.
Article
CAS
PubMed
Google Scholar
Walker AM, Dreyer NA, Friedlander E, Loughlin J, Rothman KJ, Kohn HI. An independent analysis of the National Cancer Institute study on non-nutritive sweeteners and bladder cancer. Am J Public Health. 1982;72:376–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cabaniols C, Giorgi R, Chinot O, Ferahta N, Spinelli V, Alla P, Barrie M, Lehucher-Michel MP. Links between private habits, psychological stress and brain cancer: a case-control pilot study in France. J Neuro-Oncol. 2011;103:307–16.
Article
Google Scholar
Gurney JG, Pogoda JM, Holly EA, Hecht SS, Preston-Martin S. Aspartame consumption in relation to childhood brain tumor risk: results from a case-control study.[Erratum appears in J Natl Cancer Inst 1997 Oct 1;89(19):1460]. 1997;89:1072–4.
Mahfouz EM, Sadek RR, Abdel-Latief WM, Mosallem FA, Hassan EE. The role of dietary and lifestyle factors in the development of colorectal cancer: case control study in Minia. Egypt Cent Eur J Public Health. 2014;22:215–22.
Article
PubMed
Google Scholar
Norell SE, Ahlbom A, Erwald R, Jacobson G, Lindberg-Navier I, Olin R, Tornberg B, Wiechel KL. Diet and pancreatic cancer: a case-control study. Am J Epidemiol. 1986;124:894–902.
Article
CAS
PubMed
Google Scholar
Chan JM, Wang F, Holly EA. Sweets, sweetened beverages, and risk of pancreatic cancer in a large population-based case-control study. Cancer Causes Control. 2009;20:835–46.
Article
PubMed
PubMed Central
Google Scholar
Ewertz M, Gill C. Dietary factors and breast-cancer risk in Denmark. Int J Cancer. 1990;46:779–84.
Article
CAS
PubMed
Google Scholar
Gallus S, Scotti L, Negri E, Talamini R, Franceschi S, Montella M, Giacosa A, Dal Maso L, La Vecchia C. Artificial sweeteners and cancer risk in a network of case-control studies. Ann Oncol. 2007;18:40–4.
Article
CAS
PubMed
Google Scholar
Morrison AS. Use of artificial sweeteners by cancer patients. J Natl Cancer Inst. 1979;62:1397–9.
CAS
PubMed
Google Scholar
Bosetti C, Gallus S, Talamini R, Montella M, Franceschi S, Negri E, La Vecchia C. Artificial sweeteners and the risk of gastric, pancreatic, and endometrial cancers in Italy. Cancer Epidemiol Biomark Prev. 2009;18:2235–8.
Article
CAS
Google Scholar
Akdas A, Kirkali Z, Bilir N. Epidemiological case-control study on the etiology of bladder cancer in Turkey. Eur Urol. 1990;17:23–6.
CAS
PubMed
Google Scholar
McCullough ML, Teras LR, Shah R, Diver WR, Gaudet MM, Gapstur SM. Artificially and sugar-sweetened carbonated beverage consumption is not associated with risk of lymphoid neoplasms in older men and women. J Nutr. 2014;144:2041–9.
Article
CAS
PubMed
Google Scholar
Lim U, Subar AF, Mouw T, Hartge P, Morton LM, Stolzenberg-Solomon R, Campbell D, Hollenbeck AR, Schatzkin A. Consumption of aspartame-containing beverages and incidence of hematopoietic and brain malignancies. Cancer Epidemiol Biomark Prev. 2006;15:1654–9.
Article
CAS
Google Scholar
Stepien M, Duarte-Salles T, Fedirko V, Trichopoulou A, Lagiou P, Bamia C, Overvad K, Tjonneland A, Hansen L, Boutron-Ruault MC, et al. Consumption of soft drinks and juices and risk of liver and biliary tract cancers in a European cohort. Eur J Nutr. 2016;55:7–20.
Article
CAS
PubMed
Google Scholar
Armstrong B, Lea AJ, Adelstein AM, Donovan JW, White GC, Ruttle S. Cancer mortality and saccharin consumption in diabetics. BMJ. 1976;30:151–7.
CAS
Google Scholar
Koch M, Hill GB, McPhee MS. Factors affecting recurrence rates in superficial bladder cancer. J Natl Cancer Inst. 1986;76:1025–9.
CAS
PubMed
Google Scholar
Wakai K, Ohno Y, Obata K, Aoki K. Prognostic significance of selected lifestyle factors in urinary bladder cancer. Jpn J Cancer Res. 1993;84:1223–9.
Article
CAS
PubMed
Google Scholar
Jensen OM, Kamby C. Intra-uterine exposure to saccharin and risk of bladder cancer in man. Int J Cancer. 1982;29:507–9.
Article
CAS
PubMed
Google Scholar
Lay WA, Vickery CR, Ward-Ritacco CL, Johnson KB, Berg AC, Evans EM, Johnson MA. Comparison of intake of animal and plant foods and related nutrients in postmenopausal breast cancer survivors and controls. J Nutr Gerontol Geriatr. 2016;35:15–31.
Article
PubMed
Google Scholar
Cheungpasitporn W, Thongprayoon C, O'Corragain OA, Edmonds PJ, Kittanamongkolchai W, Erickson SB. Associations of sugar-sweetened and artificially sweetened soda with chronic kidney disease: a systematic review and meta-analysis. Nephrol. 2014;19:791–7.
Article
CAS
Google Scholar
Bomback AS, Derebail VK, Shoham DA, Anderson CA, Steffen LM, Rosamond WD, Kshirsagar AV. Sugar-sweetened soda consumption, hyperuricemia, and kidney disease. Kidney Int. 2010;77:609–16.
Article
CAS
PubMed
Google Scholar
Bomback AS, Katz R, He K, Shoham DA, Burke GL, Klemmer PJ. Sugar-sweetened beverage consumption and the progression of chronic kidney disease in the multi-ethnic study of atherosclerosis (MESA). Am J Clin Nutr. 2009;90:1172–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin J, Curhan GC. Associations of sugar and artificially sweetened soda with albuminuria and kidney function decline in women. Clin J Am Soc Nephrol. 2011;6:160–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saldana TM, Basso O, Darden R, Sandler DP. Carbonated beverages and chronic kidney disease. Epidemiology (Cambridge, Mass). 2007;18:501–6.
Article
Google Scholar
Shoham DA, Durazo-Arvizu R, Kramer H, Luke A, Vupputuri S, Kshirsagar A, Cooper RS. Sugary soda consumption and albuminuria: results from the National Health and nutrition examination survey, 1999-2004. PLoS One. 2008;3:e3431.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beiswanger BB, Boneta AE, Mau MS, Katz BP, Proskin HM, Stookey GK. The effect of chewing sugar-free gum after meals on clinical caries incidence. JADA. 1998;129:1623–6.
CAS
PubMed
Google Scholar
Lopez de Bocanera ME, Koss de Stisman MA, Bru de Labanda E, Chervonagura de Gepner A. Statistical analysis of salivary pH changes after the intake of black tea and yerba mate supplemented with sweeteners. J Oral Science. 1999;41:81–5.
Article
CAS
Google Scholar
Brambilla E, Cagetti MG, Ionescu A, Campus G, Lingstrom P. An in vitro and in vivo comparison of the effect of Stevia Rebaudiana extracts on different caries-related variables: a randomized controlled trial pilot study. Caries Res. 2014;48:19–23.
Article
CAS
PubMed
Google Scholar
Jawale BA, Bendgude V, Mahuli AV, Dave B, Kulkarni H, Mittal S. Dental plaque pH variation with regular soft drink, diet soft drink and high energy drink: an in vivo study. J Contemp Dent Pract. 2012;13:201–4.
PubMed
Google Scholar
Manning RH, Edgar WM. pH changes in plaque after eating snacks and meals, and their modification by chewing sugared- or sugar-free gum. Br Dent J. 1993;174:241–4.
Article
CAS
PubMed
Google Scholar
Mendes de Santana Giongo FC, Mua B, Fatturi Parolo CC, Carlen A, Maltz M. Effects of lactose-containing stevioside sweeteners on dental biofilm acidogenicity. Brazilian Oral Research. 2014;28:249–54.
Google Scholar
Mentes A. pH changes in dental plaque after using sugar-free pediatric medicine. J Clin Pediatr Dent. 2001;25:307–12.
Article
CAS
PubMed
Google Scholar
Meyerowitz C, Syrrakou EP, Raubertas RF. Effect of sucralose--alone or bulked with maltodextrin and/or dextrose--on plaque pH in humans. Caries Res. 1996;30:439–44.
Article
CAS
PubMed
Google Scholar
Park K, Schemehorn B, Garcia N, Stookey G, Kim T, Hovliaris C. Effect of sucralose chewing gum on plaque pH response [abstract]. J Dent Res. 1993;72:397. Abstract no: 2347
Google Scholar
Park KK, Hernandez D, Schemehorn BR, Katz BP, Stookey GK, Sanders PG, Butchko HH. Effect of chewing gums on plaque pH after a sucrose challenge. ASDC J Dent Child. 1995;62:180–6.
CAS
PubMed
Google Scholar
Roos EH, Donly KJ. In vivo dental plaque pH variation with regular and diet soft drinks. Pediatr Dent. 2002;24:350–3.
PubMed
Google Scholar
Steinberg LM, Odusola F, Yip J, Mandel ID. Effect of aqueous solutions of sucralose on plaque pH. Am J Dent. 1995;8:209–11.
CAS
PubMed
Google Scholar
Steinberg LM, Odusola F, Mandel ID. Effect of sucralose in coffee on plaque pH in human subjects. Caries Res. 1996;30:138–42.
Article
CAS
PubMed
Google Scholar
Zanela NL, Bijella MF, Rosa OP. The influence of mouthrinses with antimicrobial solutions on the inhibition of dental plaque and on the levels of mutans streptococci in children. Pesqui Odontol Bras. 2002;16:101–6.
Article
PubMed
Google Scholar
Muhlemann M, Graf H. 'Harmless-To-teeth' properties of the sugar substitute aspartame and 3 aspartame-containing products: Canderal tablets--Canderal powder concentrate--Canderal sweetener powder. Swiss Dent. 1985;6:25–7.
CAS
PubMed
Google Scholar
Syrrakou EP, Meyerowitz C, Raubertas RF. The effect of Sucralose on plaque pH (IADR abstract). J Dent Res. 1993;72
Greenwood DC, Threapleton DE, Evans CEL, Cleghorn CL, Nykjaer C, Woodhead C, Burley VJ. Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: systematic review and dose-response meta-analysis of prospective studies. Brit J Nutr. 2014;112:725–34.
Article
CAS
PubMed
Google Scholar
Nettleton JA, Lutsey PL, Wang Y, Lima JA, Michos ED, Jacobs DR Jr. Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the multi-ethnic study of atherosclerosis (MESA). Diabetes Care. 2009;32:688–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lutsey PL, Steffen LM, Stevens J. Dietary intake and the development of the metabolic syndrome: the atherosclerosis risk in communities study. Circulation. 2008;117:754–61.
Article
PubMed
Google Scholar
De Koning L, Malik VS, Rimm EB, Willett WC, Hu FB. Sugar-sweetened and artificially sweetened beverage consumption and risk of type 2 diabetes in men. Am J Clin Nutr. 2011;93:1321–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Imamura F, O'Connor L, Ye Z, Mursu J, Hayashino Y, Bhupathiraju SN, Forouhi NG. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. Brit J Sports Med. 2016;50:496–504.
Article
Google Scholar
Fagherazzi G, Vilier A, Saes Sartorelli D, Lajous M, Balkau B, Clavel-Chapelon F. Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the etude Epidemiologique aupres des femmes de la Mutuelle Generale de l'Education Nationale-European prospective investigation into cancer and nutrition cohort. Am J Clin Nutr. 2013;97:517–23.
Article
CAS
PubMed
Google Scholar
Fagherazzi G, Gusto G, Affret A, Mancini FR, Dow C, Balkau B, Clavel-Chapelon F, Bonnet F, Boutron-Ruault MC. Chronic consumption of artificial sweetener in packets or tablets and type 2 diabetes risk: evidence from the E3N-European prospective investigation into cancer and nutrition study. Ann Nutr Metab. 2017;70:51–8.
Article
CAS
PubMed
Google Scholar
InterAct C, Romaguera D, Norat T, Wark PA, Vergnaud AC, Schulze MB, van Woudenbergh GJ, Drogan D, Amiano P, Molina-Montes E, et al. Consumption of sweet beverages and type 2 diabetes incidence in European adults: results from EPIC-InterAct. Diabet. 2013;56:1520–30.
Article
CAS
Google Scholar
Bhupathiraju SN, Pan A, Malik VS, Manson JE, Willett WC, van Dam RM, Hu FB. Caffeinated and caffeine-free beverages and risk of type 2 diabetes. Am J Clin Nutr. 2013;97:155–66.
Article
CAS
PubMed
Google Scholar
Armstrong B, Doll R. Bladder cancer mortality in diabetics in relation to saccharin consumption and smoking habits. Br J Prev Soc Med. 1975;29:73–81.
CAS
PubMed
PubMed Central
Google Scholar
Eeden SK, Koepsell TD, Longstreth WT, Belle G, Daling JR, McKnight B. Aspartame ingestion and headaches: a randomized crossover trial. Neurology. 1994;44:1787–93.
Article
PubMed
Google Scholar
Koehler SM, Glaros A. The effect of aspartame on migraine headache. Headache. 1988;28:10–4.
Article
CAS
PubMed
Google Scholar
Schiffman S. Aspartame and headache: No association found in clinical study. N Engl J Med. 1989;9:101–2.
Google Scholar
Lipton RB, Newman LC, Cohen JS, Solomon S. Aspartame as a dietary trigger of headache. Headache. 1989;29:90–2.
Article
CAS
PubMed
Google Scholar
Taheri S. To study the significance of dietary trigger factors and their exclusion in the aetiology and treatment of childhood headache disorders. Cephalalgia. 2011;31:202.
Google Scholar
Lindseth GN, Coolahan SE, Petros TV, Lindseth PD. Neurobehavioral effects of aspartame consumption. Res Nurs Health. 2014;37:185–93.
Article
PubMed
Google Scholar
Guo X, Park Y, Freedman ND, Sinha R, Hollenbeck AR, Blair A, Chen H. Sweetened beverages, coffee, and tea and depression risk among older US adults. PLoS One. 2014;9:e94715.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walton RG, Hudak R, Green-Waite RJ. Adverse reactions to aspartame: double-blind challenge in patients from a vulnerable population. Biol Psychiatry. 1993;34:13–7.
Article
CAS
PubMed
Google Scholar
Baker FM, Jordan B, Barclay L, Schoenberg BS. Risk factors for clinically diagnosed Alzheimer's disease. Int J Geriatr Psychiatry. 1993;8:379–85.
Article
Google Scholar
Halldorsson TI, Strøm M, Petersen SB, Olsen SF. Intake of artificially sweetened soft drinks and risk of preterm delivery: a prospective cohort study in 59,334 Danish pregnant women. Am J Clin Nutr. 2010;92:626–33.
Article
CAS
PubMed
Google Scholar
Englund-Ogge L, Brantsaeter AL, Haugen M, Sellgpiel V, Khatibi A, Myhre R, Myking S, Meltzer HM, Kacerovsky M, Nilsen RM, Jacobsson B. Association between intake of artificially sweetened and sugar-sweetened beverages and preterm delivery: a large prospective cohort study. Am J Clin Nutr. 2012;96:552–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Petherick ES, Goran MI, Wright J. Relationship between artificially sweetened and sugar-sweetened cola beverage consumption during pregnancy and preterm delivery in a multi-ethnic cohort: analysis of the born in Bradford cohort study. Eur J Clin Nutr. 2014;68:404–7.
Article
CAS
PubMed
Google Scholar
Kline J, Stein ZA, Susser M, Warburton D. Spontaneous abortion and the use of sugar substitutes (saccharin). Am J Obstet Gynecol. 1978;130:708–11.
Article
CAS
PubMed
Google Scholar
Pereira MA. Sugar-sweetened and artificially-sweetened beverages in relation to obesity risk. Adv Nutr. 2014;5:797–808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller PE, Perez V. Low-calorie sweeteners and body weight and composition: a meta-analysis of randomized controlled trials and prospective cohort studies. Am J Clin Nutr. 2014;100:765–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers PJ, Hogenkamp PS, De Graaf C, Higgs S, Lluch A, Ness AR, Penfold C, Perry R, Putz P, Yeomans MR, Mela DJ. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes. 2016;40:381–94.
Article
CAS
Google Scholar
Reid AE, Chauhan BF, Rabbani R, Lys J, Copstein L, Mann A, Abou-Setta AM, Fiander M, MacKay DS, McGavock J, et al. Early exposure to nonnutritive sweeteners and long-term metabolic health: a systematic review. Pediatrics. 2016;137
de Ruyter JC, Olthof MR, Seidell JC, Katan MB. A trial of sugar-free or sugar-sweetened beverages and body weight in children. N Engl J Med. 2012;367:1397–406.
Article
PubMed
CAS
Google Scholar
Ebbeling CB, Feldman HA, Chomitz VR, Antonelli TA, Gortmaker SL, Osganian SK, Ludwig DS. A randomized trial of sugar-sweetened beverages and adolescent body weight. N Engl J Med. 2012;367:1407–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebbeling CB, Feldman HA, Osganian SK, Chomitz VR, Ellenbogen SJ, Ludwig DS. Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: a randomized, controlled pilot study. Pediatrics. 2006;117:673–80.
Article
PubMed
Google Scholar
Hsieh M-H, Chan P, Sue Y-M, Liu J-C, Liang TH, Huang T-Y, Tomlinson B, Chow MSS, Kao P-F, Chen Y-J. Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: a two-year, randomized, placebo-controlled study. Clin Ther. 2003;25:2797–808.
Article
CAS
PubMed
Google Scholar
Kanders BS, Lavin PT, Kowalchuk MB, Greenberg I, Blackburn GL. An evaluation of the effect of aspartame on weight loss. Appetite. 1988;11(Suppl 1):73–84.
Article
PubMed
Google Scholar
Kim EJ, Kim MY, Kim JS, Cho KD, Han CK, Lee BH. Effects of fructooligosaccharides intake on body weight, lipid profiles, and calcium status among Korean college students. FASEB J. 2011;25
Knopp RH, Brandt K, Arky RA. Effects of aspartame in young persons during weight reduction. J Toxicol Environ Health. 1976;2:417–28.
Article
CAS
PubMed
Google Scholar
Leon AS, Hunninghake DB, Bell C, Rassin DK, Tephly TR. Safety of long-term large doses of aspartame. Arch Intern Med. 1989;149:2318–24.
Article
CAS
PubMed
Google Scholar
Maersk M, Belza A, Stodkilde-Jorgensen H, Ringgaard S, Chabanova E, Thomsen H, Pedersen SB, Astrup A, Richelsen B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am J Clin Nutr. 2012;95:283–9.
Article
CAS
PubMed
Google Scholar
Maki KC, Curry LL, Reeves MS, Toth PD, McKenney JM, Farmer MV, Schwartz SL, Lubin BC, Boileau AC, Dicklin MR, et al. Chronic consumption of rebaudioside a, a steviol glycoside, in men and women with type 2 diabetes mellitus. Food Chem Tox. 2008;46(Suppl 7):S47–53.
Article
CAS
Google Scholar
Marisela Vazquez Duran M, Castillo Martinez L, Orea Tejada A, Tellez Olvera DA, Delgado Perez LG, Marquez Zepeda B, Pineda Juarez JA, Lopez Rodriguez Y. Effect of decreasing the consumption of sweetened caloric and non-caloric beverages on weight, body composition and blood pressure in young adults. Eur J Prev Cardiol. 2013;1:S120.
Google Scholar
Peters JC, Beck J, Cardel M, Wyatt HR, Foster GD, Pan Z, Wojtanowski AC, Vander Veur SS, Herring SJ, Brill C, Hill JO. The effects of water and non-nutritive sweetened beverages on weight loss and weight maintenance: a randomized clinical trial. Obesity. 2016;24:297–304.
Article
PubMed
Google Scholar
Raben A, Moller AC, Vasilaras TH, Astrup A. A randomized 10 week trial of sucrose vs artificial sweeteners on body weight and blood pressure after 10 weeks [abstract]. Obes Res. 2001;9:86s.
Article
Google Scholar
Reid M, Hammersley R, Duffy M. Effects of sucrose drinks on macronutrient intake, body weight, and mood state in overweight women over 4 weeks. Appetite. 2010;55:130–6.
Article
CAS
PubMed
Google Scholar
Reyna NY, Cano C, Bermúdez VJ, Medina MT, Souki AJ, Ambard M, Nuñez M, Ferrer MA, Inglett GE. Sweeteners and beta-glucans improve metabolic and anthropometrics variables in well controlled type 2 diabetic patients. Am J Ther. 2003;10:438–43.
Article
PubMed
Google Scholar
Rodearmel SJ, Wyatt HR, Stroebele N, Smith SM, Ogden LG, Hill JO. Small changes in dietary sugar and physical activity as an approach to preventing excessive weight gain: the America on the move family study. Obes Res. 2007;120:e869–79.
Google Scholar
Sørensen LB, Vasilaras TH, Astrup A, Raben A. Sucrose compared with artificial sweeteners: a clinical intervention study of effects on energy intake, appetite, and energy expenditure after 10 wk of supplementation in overweight subjects. Am J Clin Nutr. 2014;100:36–45.
Article
PubMed
CAS
Google Scholar
Williams CL, Strobino BA, Brotanek J. Weight control among obese adolescents: a pilot study. Int J Food Sci Nutr. 2007;58:217–30.
Article
PubMed
Google Scholar
French SA, Sherwood NE, JaKa MM, Haapala JL, Ebbeling CB, Ludwig DS. Physical changes in the home environment to reduce television viewing and sugar-sweetened beverage consumption among 5- to 12-year-old children: a randomized pilot study. Pediatric Obesity. 2016;11:e12–e5.
Article
CAS
PubMed
Google Scholar
Markey O, Le Jeune J, Lovegrove JA. Energy compensation following consumption of sugar-reduced products: a randomized controlled trial. Eur J Nutr. 2016;55:2137–49.
Article
CAS
PubMed
Google Scholar
Kassi EN, Landis G, Pavlaki A, Lambrou G, Mantzou E, Androulakis I, Giannakou A, Papanikolaou E, Chrousos GP. Long-term effects of stevia rebaudiana on glucose and lipid profile, adipocytokines, markers of inflammation and oxidation status in patients with metabolic syndrome. Endocr Rev. 2016;37.
Vazquez-Duran M, Orea-Tejeda A, Castillo-Martinez L, Cano-Garcia A, Tellez-Olvera L, Keirns-Davis C. A randomized control trial for reduction of caloric and non-caloric sweetened beverages in young adults: effects in weight, body composition and blood pressure. Nutr Hosp. 2016;33:1372–8.
Article
PubMed
Google Scholar
Shin DH, Lee JH, Kang MS, Kim TH, Jeong SJ, Kim CH, Kim SS, Kim IJ. Glycemic effects of rebaudioside a and erythritol in people with glucose intolerance. Diabetes Metab J. 2016;40:283–9.
Article
PubMed
PubMed Central
Google Scholar
Berkey CS, Rockett HR, Field AE, Gillman MW, Colditz GA. Sugar-added beverages and adolescent weight change. Obes Res. 2004;12:778–88.
Article
PubMed
Google Scholar
Chen L, Appel LJ, Loria C, Lin PH, Champagne CM, Elmer PJ, Ard JD, Mitchell D, Batch BC, Svetkey LP, Caballero B. Reduction in consumption of sugar-sweetened beverages is associated with weight loss: the PREMIER trial. Am J Clin Nutr. 2009;89:1299–306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colditz GA, Willett WC, Stampfer MJ, London SJ, Segal MR, Speizer FE. Patterns of weight change and their relation to diet in a cohort of healthy women. Am J Clin Nutr. 1990;51:1100–5.
CAS
PubMed
Google Scholar
Fowler SP, Williams K, Resendez RG, Hunt KJ, Hazuda HP, Stern MP. Fueling the obesity epidemic? Artificially sweetened beverage use and long-term weight gain. Obes J. 2008;16:1894–900.
Article
Google Scholar
Fowler SP, Williams K, Hazuda HP. Diet soda intake is associated with long-term increases in waist circumference in a biethnic cohort of older adults: the San Antonio longitudinal study of aging. J Am Geriatr Soc. 2015;63:708–15.
Article
PubMed
PubMed Central
Google Scholar
Kral TVE, Stunkard AJ, Berkowitz RI, Stallings VA, Moore RH, Faith MS. Beverage consumption patterns of children born at different risk of obesity. Obesity. 2008;16:1802–8.
Article
PubMed
PubMed Central
Google Scholar
Ludwig DS, Peterson KE, Gortmaker SL. Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet. 2001;357:505–8.
Article
CAS
PubMed
Google Scholar
Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364:2392–404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan A, Malik VS, Hao T, Willett WC, Mozaffarian D, Hu FB. Changes in water and beverage intake and long-term weight changes: results from three prospective cohort studies. Int J Obes. 2013;37:1378–85.
Article
CAS
Google Scholar
Parker DR, Gonzalez S, Derby CA, Gans KM, Lasater TM, Carleton RA. Dietary factors in relation to weight change among men and women from two southeastern New England communities. Int J Obes. 1997;21:103–9.
Article
CAS
Google Scholar
Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC, Hu FB. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. J Am Med Assoc. 2004;292:927–34.
Article
CAS
Google Scholar
Stellman SD, Garfinkel L. Artificial sweetener use and one-year weight change among women. Prev Med. 1986;15:195–202.
Article
CAS
PubMed
Google Scholar
Striegel-Moore RH, Thompson D, Affenito SG, Franko DL, Obarzanek E, Barton BA, Schreiber GB, Daniels SR, Schmidt M, Crawford PB. Correlates of beverage intake in adolescent girls: the National Heart, Lung, and Blood Institute growth and health study. J Ped. 2006;148:183–7.
Article
Google Scholar
Vanselow MS, Pereira MA, Neumark-Sztainer D, Raatz SK. Adolescent beverage habits and changes in weight over time: findings from project EAT. Am J Clin Nutr. 2009;90:1489–95.
Article
CAS
PubMed
Google Scholar
Aguero SD, Onate G, Rivera PH. Consumption of non-nutritive sweeteners and nutritional status in 10-16 year old students. Arch Argent Pediatr. 2014;112:207–14.
Google Scholar
Cancer Prevention Study II. The American Cancer Society Prospective Study. Stat Bull Metrop Insur Co. 1992;73:21–9.
Google Scholar
Bellisle F, De Altenburg Assis MA, Fieux B, Preziosi P, Galan P, Guy-Grand B, Hercberg S. Use of 'light' foods and drinks in French adults: biological, anthropometric and nutritional correlates. J Hum Nutr Diet. 2001;14:191–206.
Article
CAS
PubMed
Google Scholar
Blum JW, Jacobsen DJ, Donnelly JE. Beverage consumption patterns in elementary school aged children across a two-year period. J Am Coll Nutr. 2005;24:93–8.
Article
PubMed
Google Scholar
Bouchard DR, Ross R, Janssen I. Coffee, tea and their additives: association with BMI and waist circumference. Obesity Facts. 2010;3:345–52.
Article
CAS
PubMed
Google Scholar
Crichton G, Alkerwi A, Elias M. Diet soft drink consumption is associated with the metabolic syndrome: a two sample comparison. Nutrients. 2015;7:3569–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duran Aguero S, Blanco Batten E, Rodriguez Noel Mdel P, Cordon Arrivillaga K, Salazar de Ariza J, Record Cornwall J, Cereceda Bujaico Mdel P, Antezana Almorza S, Espinoza Bernardo S, Encina Vega C. Association between non-nutritive sweeteners and obesity risk among university students in Latin America. Revista Medica de Chile. 2015;143:367–73.
Article
PubMed
Google Scholar
Durán Agüero S, Vásquez Leiva A, Morales Illanes G, Schifferli Castro I, Sanhueza Espinoza C, Encina Vega C, Vivanco Cuevas K, Mena Bolvaran R. ASSOCIATION BETWEEN STEVIA SWEETENER CONSUMPTION AND NUTRITIONAL STATUS IN UNIVERSITY STUDENTS. Nutr Hosp. 2015;32:362–6.
PubMed
Google Scholar
Forshee RA, Storey ML. Total beverage consumption and beverage choices among children and adolescents. Int J Food Sci Nutr. 2003;54:297–307.
Article
PubMed
Google Scholar
Garcia-Meseguer MJ, Cervera Burriel F, Vico Garcia C, Milla Tobarra M, Serrano UR. Consumption of non caloric sweeteners in university population. Ann Nutr Metab. 2013;63:1103.
Google Scholar
Geraldo APG, Pinto ESMEM. Factors associated with diet soda consumption by employees of public universities in Sao Paulo state (Brazil). Obes Facts. 2013;6:150–1.
Google Scholar
Giammattei J, Blix G, Marshak HH, Wollitzer AO, Pettitt DJ. Television watching and soft drink consumption: associations with obesity in 11- to 13-year-old schoolchildren. Arch Pediatr Adolesc Med. 2003;157:882–6.
Article
PubMed
Google Scholar
Ledoux TA, Watson K, Barnett A, Nguyen NT, Baranowski JC, Baranowski T. Components of the diet associated with child adiposity: a cross-sectional study. J Am Coll Nutr. 2011;30:536–46.
Article
CAS
PubMed
Google Scholar
O'Connor TM, Yang SJ, Nicklas TA. Beverage intake among preschool children and its effect on weight status. Pediatrics. 2006;118:e1010–8.
Article
PubMed
Google Scholar
Serra-Majem L, Ribas L, Ingles C, Fuentes M, Lloveras G, Salleras L. Cyclamate consumption in Catalonia, Spain (1992): relationship with the body mass index. Food Addit Contam. 1996;13:695–703.
Article
CAS
PubMed
Google Scholar
Appleton KM, Conner MT. Body weight, body-weight concerns and eating styles in habitual heavy users and non-users of artificially sweetened beverages. Appetite. 2001;37:225–30.
Article
CAS
PubMed
Google Scholar
Chia CW, Shardell M, Tanaka T, Liu DD, Gravenstein KS, Simonsick EM, Egan JM, Ferrucci L. Chronic low-calorie sweetener use and risk of abdominal obesity among older adults: a cohort study. PLoS One. 2016;11
Drewnowski A, Rehm CD. The use of low-calorie sweeteners is associated with self-reported prior intent to lose weight in a representative sample of US adults. Nutr Diab. 2016;6
Azad MB, Sharma AK, de Souza RJ, Dolinsky VW, Becker AB, Mandhane PJ, Turvey SE, Subbarao P, Lefebvre DL, Sears MR, Canadian Healthy Infant Longitudinal Development Study I. Association between artificially sweetened beverage consumption during pregnancy and infant body mass index. JAMA Pediatr. 2016;170:662–70.
Article
PubMed
Google Scholar
Kuk JL, Brown RE. Aspartame intake is associated with greater glucose intolerance in individuals with obesity. Appl Physiol Nutr Metab. 2016;41:795–8.
Article
CAS
PubMed
Google Scholar
Wulaningsih W, Van Hemelrijck M, Tsilidis KK, Tzoulaki I, Patel C, Rohrmann S. Investigating nutrition and lifestyle factors as determinants of abdominal obesity: an environment-wide study. Int J Obes. 2017;41:340–7.
Article
CAS
Google Scholar
Maki KC, Curry LL, Carakostas MC, Tarka SM, Reeves MS, Farmer MV, McKenney JM, Toth PD, Schwartz SL, Lubin BC, et al. The hemodynamic effects of rebaudioside a in healthy adults with normal and low-normal blood pressure. Food Chem Toxicol. 2008;46(Suppl 7):S40–6.
Article
CAS
PubMed
Google Scholar
Grotz VL, Henry RR, McGill JB, Prince MJ, Shamoon H, Trout JR, Pi-Sunyer X. Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes. J Am Diet Assoc. 2003;103:1607–12.
Article
PubMed
Google Scholar
Horwitz DL, McLane M, Kobe P. Response to single dose of aspartame or saccharin by NIDDM patients. Diab Care. 1988;11:230–4.
Article
CAS
Google Scholar
Olalde-Mendoza L, Moreno-Gonzalez YE. Modification of fasting blood glucose in adults with diabetes mellitus type 2 after regular soda and diet soda intake in the state of Queretaro, Mexico. Arch Latinoam Nutr. 2013;63:142–7.
PubMed
Google Scholar
Stern SB, Bleicher SJ, Flores A, Gombos G, Recitas D, Shu J. Administration of aspartame in non-insulin-dependent diabetics. J Toxicol Environ Health. 1976;2:429–39.
Article
CAS
PubMed
Google Scholar
Koyuncu BU, Balcı MK. Metabolic effects of dissolved aspartame in the mouth before meals in prediabetic patients; a randomized controlled cross-over study. J Endocrinol Diabetes Obes. 2014;2:1032.
Google Scholar
Chantelau EA, Gosseringer G, Sonnenberg GE, Berger M. Moderate intake of sucrose does not impair metabolic control in pump-treated diabetic out-patients. Diabetologia. 1985;28:204–7.
Article
CAS
PubMed
Google Scholar
Cooper PL, Wahlqvist ML, Simpson RW. Sucrose versus saccharin as an added sweetener in non-insulin-dependent diabetes: short- and medium-term metabolic effects. Diab Med. 1988;5:676–80.
Article
CAS
Google Scholar
Colagiuri S, Miller JJ, Edwards RA. Metabolic effects of adding sucrose and aspartame to the diet of subjects with noninsulin-dependent diabetes mellitus. Am J Clin Nutr. 1989;50:474–8.
CAS
PubMed
Google Scholar
Kullessa Nehrling J, Kobe P, McLane MP. Aspartame use by persons with diabetes. Diabetes Care. 1985;8:415–7.
Article
PubMed
Google Scholar
Mezitis NHE, Maggio CA, Koch P, Quddoos A, Allison DB, Pi-Sunyer FX. Glycemic effect of a single high oral dose of the novel sweetener sucralose in patients with diabetes. Diabetes Care. 1996;19:1004–5.
Article
CAS
PubMed
Google Scholar
Temizkan S, Deyneli O, Gunes M, Yasar M, Yazici D, Imeryuz N, Haklar G, Sirikci O, Yavuz D. Effect of artificial sweeteners on blood glucose, GLP-1, PYY, insulin and c-peptide levels in patients with type 2 diabetes. http://press.endocrine.org/doi/abs/10.1210/endo-meetings.2013.DGM.15.SAT-831.
Argyri K, Sotiropoulos A, Psarou E, Papazafiropoulou A, Zampelas A, Kapsokefalou M. Dessert formulation using sucralose and dextrin affects favorably postprandial response to glucose, insulin, and C-peptide in type 2 diabetic patients. Rev Diabet Stud. 2013;10:39–48.
Article
PubMed
PubMed Central
Google Scholar
Okuno G, Kawakami F, Tako H. Glucose tolerance, blood lipid, insulin and glucagon concentration after single or continuous administration of aspartame in diabetics. Diabetes Res Clin Pract. 1986;2:23–7.
Article
CAS
PubMed
Google Scholar
Pröls H, Wittmann P, Haslbeck M, Mehnert H. Investigations on the effect of high sodium cyclamate doses on the metabolism of diabetics. Munch Med Wochenschr. 1974;116:1885–8.
Google Scholar
Shigeta H, Yoshida T, Nakai M, Mori H, Kano Y, Nishioka H, Kajiyama S, Kitagawa Y, Kanatsuna T. Kondo M, et al. Effects of aspartame on diabetic rats and diabetic patients. 1985;31:533–40.
CAS
Google Scholar
Barriocanal LA, Palacios M, Benitez G, Benitez S, Jimenez JT, Jimenez N, Rojas V. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in type 1 and type 2 diabetics. Regul Toxicol Pharmacol. 2008;51:37–41.
Article
CAS
PubMed
Google Scholar
Maki KC, Curry LL, McKenney JM, Farmer MV, Reeves MS, Dicklin MR. Glycemic and blood pressure responses to acute doses of rebaudioside a, a steviol glycoside, in subjects with normal glucose tolerance or type 2 diabetes mellitus. FASEB J. 2009;23
Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metab Clin Exp. 2004;53:73–6.
Article
CAS
PubMed
Google Scholar
Ritu M, Nandini J. Nutritional composition of Stevia Rebaudiana, a sweet herb, and its hypoglycaemic and hypolipidaemic effect on patients with non-insulin dependent diabetes mellitus. J Sci Food Agric. 2016;96:4231–4.
Article
CAS
PubMed
Google Scholar
Kassi E, Landis G, Pavlaki A, Lambrou G, Mantzou E, Androulakis I, Giannakou A, Papanikolaou E, Chrousos GP. Acute effects of stevia rebaudiana extract on postprandial glucose metabolism in patients with metabolic syndrome. Endocr Rev. 2016;37
Raben A, Vasilaras TH, Moller AC, Astrup A. Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. In Clin Nutr. 76:721–92002. 721-9
Chan P, Tomlinson B, Chen YJ, Liu JC, Hsieh MH, Cheng JT. A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br J Clin Pharmacol. 2000;50:215–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tate DF, Turner-McGrievy G, Lyons E, Stevens J, Erickson K, Polzien K, Diamond M, Wang X, Popkin B. Replacing caloric beverages with water or diet beverages for weight loss in adults: main results of the choose healthy options consciously everyday (CHOICE) randomized clinical trial.[erratum appears in am J Clin Nutr. 2013 Dec;98(6):1599]. Am J Clin Nutr. 2012;95:555–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Memon M, MacDonald I, Bennett T. Effect of mental stress on cardiovascular function at rest and after ingestion of fructose or sucralose in healthy, white European males. Turk J Med Sci. 2013;43:913–8.
Article
CAS
Google Scholar
Ferri LAF, Alves-Do-Prado W, Yamada SS, Gazola S, Batista MR, Bazotte RB. Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytoter Res. 2006;20:732–6.
Article
CAS
Google Scholar
Chen L, Caballero B, Mitchell DC, Loria C, Lin PH, Champagne CM, Elmer PJ, Ard JD, Batch BC, Anderson CA, Appel LJ. Reducing consumption of sugar-sweetened beverages is associated with reduced blood pressure: a prospective study among United States adults.[Erratum appears in Circulation. 2010 Jul 27;122(4):e408]. Circulation. 2010;121:2398–406.
Duffey KJ, Steffen LM, Van Horn L, Jacobs DR, Popkin BM. Dietary patterns matter: diet beverages and cardiometabolic risks in the longitudinal coronary artery risk development in young adults (CARDIA) study. Am J Clin Nutr. 2012;95:909–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fung TT, Malik V, Rexrode KM, Manson JE, Willett WC, Hu FB. Sweetened beverage consumption and risk of coronary heart disease in women. Am J Clin Nutr. 2009;89:1037–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winkelmayer WC, Stampfer MJ, Willett WC, Curhan GC. Habitual caffeine intake and the risk of hypertension in women. JAMA. 2005;294:2330–5.
Article
CAS
PubMed
Google Scholar
Buss NE, Renwick AG, Donaldson KM, George CF. The metabolism of cyclamate to cyclohexylamine and its cardiovascular consequences in human volunteers. Toxicol Appl Pharmacol. 1992;115:199–210.
Article
CAS
PubMed
Google Scholar
Fernandes J, Arts J, Dimond E, Hirshberg S, Lofgren IE. Dietary factors are associated with coronary heart disease risk factors in college students. Nutr Res. 2013;33:647–52.
Article
CAS
PubMed
Google Scholar
Bernardo WM, Simoes RS, Buzzini RF, Nunes VM, Glina F. Adverse effects of the consumption of artificial sweeteners - systematic review. Rev Assoc Med Bras. 2016;62:120–2.
Article
CAS
PubMed
Google Scholar
Borkum JM. Migraine triggers and oxidative stress: a narrative review and synthesis. Headache. 2016;56:12–35.
Article
PubMed
Google Scholar
Hendriksen MA, Tijhuis MJ, Fransen HP, Verhagen H, Hoekstra J. Impact of substituting added sugar in carbonated soft drinks by intense sweeteners in young adults in the Netherlands: example of a benefit-risk approach. Eur J Nutr. 2011;50:41–51.
Article
CAS
PubMed
Google Scholar
Pereira MA. Diet beverages and the risk of obesity, diabetes, and cardiovascular disease: a review of the evidence. Nutr Rev. 2013;71:433–40.
Article
PubMed
Google Scholar
Russell WR, Baka A, Bjorck I, Delzenne N, Gao D, Griffiths HR, Hadjilucas E, Juvonen K, Lahtinen S, Lansink M, et al. Impact of diet composition on blood glucose regulation. Crit Rev Food Sci Nutr. 2016;56:541–90.
Article
CAS
PubMed
Google Scholar
Shankar P, Ahuja S, Sriram K. Non-nutritive sweeteners: review and update. Nutrition (Burbank, Los Angeles County, Calif). 2013;29:1293–9.
Article
CAS
Google Scholar
Spencer M, Gupta A, Dam LV, Shannon C, Menees S, Chey WD. Artificial sweeteners: a systematic review and primer for gastroenterologists. J Neurogastroenterol Motil. 2016;22:168–80.
Article
PubMed
PubMed Central
Google Scholar
Timpe Behnen EM, Ferguson MC, Carlson A. Do sugar substitutes have any impact on glycemic control in patients with diabetes? J Pharm Technol. 2013;29:61–5.
Article
Google Scholar
Poolsup N, Pongmesa T, Cheunchom C, Rachawat P, Boonsong R. Meta-analysis of the efficacy and safety of stevioside (from stevia rebaudiana bertoni) in blood pressure control in patients with hypertension. In Value in Health. 15:A6302012:A630.
Urban JD, Carakostas MC, Taylor SL. Steviol glycoside safety: are highly purified steviol glycoside sweeteners food allergens? Food Chem Toxicol. 2015;75:71–8.
Article
CAS
PubMed
Google Scholar
Wang DD, Shams-White M, Bright OJ, Parrott JS, Chung M. Creating a literature database of low-calorie sweeteners and health studies: evidence mapping. BMC Med Res Methodol. 2016;16:1.
Article
PubMed
PubMed Central
Google Scholar
Palmer JR, Boggs DA, Krishnan S, Hu FB, Singer M, Rosenberg L. Sugar-sweetened beverages and incidence of type 2 diabetes mellitus in African American women. Arch Int Med. 2008;168:1487–92.
Article
Google Scholar
Sakurai M, Nakamura K, Miura K, Takamura T, Yoshita K, Nagasawa S, Morikawa Y, Ishizaki M, Kido T, Naruse Y, et al. Sugar-sweetened beverage and diet soda consumption and the 7-year risk for type 2 diabetes mellitus in middle-aged Japanese men. Eur J Nutr. 2014;53:251–8.
Article
CAS
PubMed
Google Scholar
Grenby TH. Dental plaque, dental caries and sugar intake. The effects on the plaque of a low-calorie sweetener used in beverages in place of ordinary sugar. Brit Dent J. 1975;139:129–34.
Article
CAS
PubMed
Google Scholar
Serra Majem L, Garcia Closas R, Ramon JM, Manau C, Cuenca E, Krasse B. Dietary habits and dental caries in a population of Spanish schoolchildren with low levels of caries experience. Caries Res. 1993;27:488–94.
Article
CAS
PubMed
Google Scholar
Serra-Majem L, Bassas L, Garcia-Glosas R, Ribas L, Ingles C, Casals I, Saavedra P, Renwick AG. Cyclamate intake and cyclohexylamine excretion are not related to male fertility in humans. Food Addit Contam. 2003;20:1097–104.
Article
CAS
PubMed
Google Scholar
Petersen SB, Rasmussen MA, Olsen SF, Vestergaard P, Molgaard C, Halldorsson TI, Strom M. Maternal dietary patterns during pregnancy in relation to offspring forearm fractures: prospective study from the Danish National Birth Cohort. Nutrients. 2015;7:2382–400.
Article
PubMed
PubMed Central
Google Scholar
Samant SS, Wilkes K, Odek Z, Seo HS. Tea-induced calmness: sugar-sweetened tea calms consumers exposed to acute stressor. Sci Rep. 2016;6:36537.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thakkar P, Arora K, Goyal K, Das RR, Javadekar B, Aiyer S, Panigrahi SK. To evaluate and compare the efficacy of combined sucrose and non-nutritive sucking for analgesia in newborns undergoing minor painful procedure: a randomized controlled trial. J Perinatol. 2016;36:67–70.
Article
CAS
PubMed
Google Scholar
Paganini-Hill A, Kawas CH, Corrada MM. Non-alcoholic beverage and caffeine consumption and mortality: the leisure world cohort study. Prev Med. 2007;44:305–10.
Article
PubMed
Google Scholar