Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2019;393(10184):1958–72.
Article
Google Scholar
Leeming ER, Louca P, Gibson R, Menni C, Spector TD, Le Roy CI. The complexities of the diet-microbiome relationship: advances and perspectives. Genome Med. 2021;13(1):10.
Article
PubMed
PubMed Central
Google Scholar
Dao MC, Subar AF, Warthon-Medina M, Cade JE, Burrows T, Golley RK, et al. Dietary assessment toolkits: an overview. Public Health Nutr. 2019;22(3):404–18.
Article
PubMed
Google Scholar
De Keyzer W, Huybrechts I, De Vriendt V, Vandevijvere S, Slimani N, Van Oyen H, et al. Repeated 24-hour recalls versus dietary records for estimating nutrient intakes in a national food consumption survey. Food Nutr Res. 2011;55. https://doi.org/10.3402/fnr.v55i0.7307.
Services UDoHH. 24-hour dietary recall (24HR) at a glance. Available from: https://dietassessmentprimer.cancer.gov/profiles/recall/. Accessed 21 Aug 2021.
Warthon-Medina M, Hooson J, Hancock N, Alwan NA, Ness A, Wark PA, et al. Development of Nutritools, an interactive dietary assessment tools website, for use in health research. Lancet. 2017;390:S94.
Article
Google Scholar
Food Record National Cancer Institute: National Institutes of Health; Available from: https://dietassessmentprimer.cancer.gov/. Accessed 21 Aug 2021.
Albar SA, Alwan NA, Evans CEL, Cade JE. Does food portion size differ by level of household income? A cross-sectional study using the UK National Diet and Nutrition Survey 2008–11. Lancet. 2015;386:S18.
Article
Google Scholar
Rosell MS, Hellénius ML, de Faire UH, Johansson GK. Associations between diet and the metabolic syndrome vary with the validity of dietary intake data. Am J Clin Nutr. 2003;78(1):84–90.
Article
CAS
PubMed
Google Scholar
Fang S, Zhu F, Boushey CJ, Delp EJ. The use of co-occurrence patterns in single image based food portion estimation. IEEE Glob Conf Signal Inf Process. 2017;2017:462–6.
PubMed
Google Scholar
Barabási A-L, Menichetti G, Loscalzo J. The unmapped chemical complexity of our diet. Nat Food. 2020;1(1):33–7.
Article
Google Scholar
Almoosawi S, Vingeliene S, Gachon F, Voortman T, Palla L, Johnston JD, et al. Chronotype: implications for epidemiologic studies on chrono-nutrition and cardiometabolic health. Adv Nutr. 2019;10(1):30–42.
Article
PubMed
Google Scholar
Sievert K, Hussain SM, Page MJ, Wang Y, Hughes HJ, Malek M, et al. Effect of breakfast on weight and energy intake: systematic review and meta-analysis of randomised controlled trials. BMJ. 2019;364:l42.
Article
PubMed
PubMed Central
Google Scholar
Gabel K, Hoddy KK, Haggerty N, Song J, Kroeger CM, Trepanowski JF, et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr Healthy Aging. 2018;4(4):345–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conway R, Robertson C, Dennis B, Stamler J, Elliott P. Standardised coding of diet records: experiences from INTERMAP UK. Br J Nutr. 2004;91(5):765–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subar AF, Freedman LS, Tooze JA, Kirkpatrick SI, Boushey C, Neuhouser ML, et al. Addressing current criticism regarding the value of self-report dietary data. J Nutr. 2015;145(12):2639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lachat C, Hawwash D, Ocké MC, Berg C, Forsum E, Hörnell A, et al. Strengthening the reporting of observational studies in epidemiology-nutritional epidemiology (STROBE-nut): an extension of the STROBE statement. PLoS Med. 2016;13(6):e1002036.
Article
PubMed
PubMed Central
Google Scholar
Verdi S, Abbasian G, Bowyer RCE, Lachance G, Yarand D, Christofidou P, et al. Twin family registries worldwide: An important resource for scientific research. Twin Res Hum Genet. 2019;22(6):523-9. https://doi.org/10.1017/thg.2019.65.
van den Berg L, Henneman P, Willems van Dijk K, Delemarre-van de Waal HA, Oostra BA, van Duijn CM, et al. Heritability of dietary food intake patterns. Acta Diabetol. 2013;50(5):721–6.
Article
CAS
PubMed
Google Scholar
Frankenfield DC, Muth ER, Rowe WA. The Harris-Benedict studies of human basal metabolism: history and limitations. J Am Diet Assoc. 1998;98(4):439–45.
Article
CAS
PubMed
Google Scholar
Teucher B, Skinner J, Skidmore PM, Cassidy A, Fairweather-Tait SJ, Hooper L, et al. Dietary patterns and heritability of food choice in a UK female twin cohort. Twin Res Hum Genet. 2007;10(5):734–48.
Article
PubMed
Google Scholar
Food Standards Agency. McCance & Widdowson’s The Composition of Foods. 6th ed. Cambridge: Royal Society of Chemistry; 2002.
Nelson M, Atkinson M, Meyer J, Great Britain. Ministry of Agriculture, Fisheries and Food, Ministry of Agriculture, Fisheries and Food, London (GB), Nutritional Epidemiology Group UK. Food Portion Sizes: A User’s Guide to the Photographic Atlas. 1997.
Google Scholar
Slimani N, Ferrari P, Ocké M, Welch A, Boeing H, van Liere M, et al. Standardization of the 24-hour diet recall calibration method used in the European Prospective Investigation into Cancer and Nutrition (EPIC): general concepts and preliminary results. Eur J Clin Nutr. 2000;54(12):900–17.
Article
CAS
PubMed
Google Scholar
Goff LM, Huang P, Silva MJ, Bordoli C, Enayat EZ, Molaodi OR, et al. Associations of dietary intake with cardiometabolic risk in a multi-ethnic cohort: a longitudinal analysis of the Determinants of Adolescence, now young Adults, Social well-being and Health (DASH) study. Br J Nutr. 2019;121(9):1069–79.
Article
CAS
PubMed
Google Scholar
Package ‘igraph’. Network analysis and visualization. 2019. Available from: https://igraph.org/r/doc/igraph.pdf. Accessed 21 Aug 2021.
Gaal S, Kerr MA, Ward M, McNulty H, Livingstone MBE. Breakfast consumption in the UK: patterns, nutrient intake and diet quality. A study from the International Breakfast Research Initiative Group. Nutrients. 2018;10(8):999.
Article
PubMed Central
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. Package ‘vegan’. Community Ecology Package. 2020. Available from: https://cran.r-project.org/web/packages/vegan/vegan.pdf.
Google Scholar
Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65(4 Suppl):1220S–8S discussion 9S-31S.
Article
CAS
PubMed
Google Scholar
Package ‘lme4’. Linear mixed-effects models using ‘Eigen’ and S4. 2020. Available from: https://cran.r-project.org/web/packages/lme4/lme4.pdf. Accessed 21 Aug 2021.
Holst K, Scheike, T. Package ‘mets’. Analysis of multivariate event times. 2020. Available from: https://cran.r-project.org/web/packages/mets/mets.pdf.
Google Scholar
Overview of the UK population: August 2019 [press release]. 2019.
Digital N. Health survey for England 2018: data tables. 2018.
Google Scholar
Kroeger CM, Garza C, Lynch CJ, Myers E, Rowe S, Schneeman BO, et al. Scientific rigor and credibility in the nutrition research landscape. Am J Clin Nutr. 2018;107(3):484–94.
Article
PubMed
PubMed Central
Google Scholar
Guan VX, Probst YC, Neale EP, Tapsell LC. Evaluation of the dietary intake data coding process in a clinical setting: implications for research practice. PLoS One. 2019;14(8):e0221047.
Article
CAS
PubMed
PubMed Central
Google Scholar
NDNS: results from years 7 and 8 (combined). Public Health England and Food Standards Agency. 2018. Available from: https://www.gov.uk/government/statistics/ndns-results-from-years-7-and-8-combined. Accessed 21 Aug 2021.
Kolar AS, Patterson RE, White E, Neuhouser ML, Frank LL, Standley J, et al. A practical method for collecting 3-day food records in a large cohort. Epidemiology. 2005;16(4):579–83.
Article
PubMed
Google Scholar
Naska A, Lagiou A, Lagiou P. Dietary assessment methods in epidemiological research: current state of the art and future prospects. F1000Res. 2017;6:926.
Article
PubMed
PubMed Central
Google Scholar
Centre NCBR. Estimated food diaries. Available from: https://dapa-toolkit.mrc.ac.uk/diet/subjective-methods/estimated-food-diaries. Accessed 21 Aug 2021.
Mazzeo T, Roncoroni L, Lombardo V, Tomba C, Elli L, Sieri S, et al. Evaluation of a modified Italian European prospective investigation into cancer and nutrition food frequency questionnaire for individuals with celiac disease. J Acad Nutr Diet. 2016;116(11):1810–6.
Article
PubMed
Google Scholar
Bingham SA, Gill C, Welch A, Cassidy A, Runswick SA, Oakes S, et al. Validation of dietary assessment methods in the UK arm of EPIC using weighed records, and 24-hour urinary nitrogen and potassium and serum vitamin C and carotenoids as biomarkers. Int J Epidemiol. 1997;26(Suppl 1):S137–51.
Article
PubMed
Google Scholar
O'Neil CE, Nicklas TA, Fulgoni VL. Nutrient intake, diet quality, and weight/adiposity parameters in breakfast patterns compared with no breakfast in adults: national health and nutrition examination survey 2001–2008. J Acad Nutr Diet. 2014;114(12, Supplement):S27–43.
Article
PubMed
Google Scholar
Song WO, Chun OK, Obayashi S, Cho S, Chung CE. Is consumption of breakfast associated with body mass index in US adults? J Am Diet Assoc. 2005;105(9):1373–82.
Article
PubMed
Google Scholar
Hoddy KK, Marlatt KL, Çetinkaya H, Ravussin E. Intermittent fasting and metabolic health: from religious fast to time-restricted feeding. Obesity. 2020;28(S1):S29–37.
Article
PubMed
Google Scholar
Martens CR, Rossman MJ, Mazzo MR, Jankowski LR, Nagy EE, Denman BA, et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. Geroscience. 2020;42(2):667–86.
Article
PubMed
PubMed Central
Google Scholar
Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S, Shoghi A, et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 2020;31(1):92–104.e5.
Article
CAS
PubMed
Google Scholar
Jelenkovic A, Sund R, Hur Y-M, Yokoyama Y, Hjelmborg JB, Möller S, et al. Genetic and environmental influences on height from infancy to early adulthood: an individual-based pooled analysis of 45 twin cohorts. Sci Rep. 2016;6(1):28496.
Article
PubMed
PubMed Central
Google Scholar
Hilker R, Helenius D, Fagerlund B, Skytthe A, Christensen K, Werge TM, et al. Heritability of schizophrenia and schizophrenia spectrum based on the Nationwide Danish Twin Register. Biol Psychiatry. 2018;83(6):492–8.
Article
PubMed
Google Scholar
Cole JB, Florez JC, Hirschhorn JN. Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations. Nat Commun. 2020;11(1):1467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dashti HS, Merino J, Lane JM, Song Y, Smith CE, Tanaka T, et al. Genome-wide association study of breakfast skipping links clock regulation with food timing. Am J Clin Nutr. 2019;110(2):473–84.
Article
PubMed
PubMed Central
Google Scholar
Willett W. An overview of issues related to the correction of non-differential exposure measurement error in epidemiologic studies. Stat Med. 1989;8(9):1031–40.
Article
CAS
PubMed
Google Scholar