Alberti KGMM, Zimmet P, Shaw J: Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006, 23: 469-480.
Article
CAS
PubMed
Google Scholar
Diabetes Fact sheet N°312. [http://www.who.int/mediacentre/factsheets/fs312/en/index.html]
O'Neil CE, Zanovec M, Cho SS, Nicklas TA: Whole grain and fiber consumption are associated with lower body weight measures in US adults: National Health and Nutrition Examination Survey 1999–2004. Nutr Res. 2010, 30: 815-822. 10.1016/j.nutres.2010.10.013.
Article
PubMed
Google Scholar
Good CK, Holschuh N, Albertson AM, Eldridge AL: Whole Grain Consumption and Body Mass Index in Adult Women: An Analysis of NHANES 1999–2000 and the USDA Pyramid Servings Database. J Am Coll Nutr. 2008, 27: 80-87. 10.1080/07315724.2008.10719678.
Article
PubMed
Google Scholar
Harland JI, Garton LE: Whole-grain intake as a marker of healthy body weight and adiposity. Public Health Nutr. 2008, 11: 554-563.
Article
PubMed
Google Scholar
McKeown NM, Meigs JB, Liu S, Wilson PW, Jacques PF: Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am J Clin Nutr. 2002, 76: 390-398.
CAS
PubMed
Google Scholar
Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H: Fiber and Magnesium Intake and Incidence of Type 2 Diabetes: A Prospective Study and Meta-analysis. Arch Intern Med. 2007, 167: 956-965. 10.1001/archinte.167.9.956.
Article
CAS
PubMed
Google Scholar
Park Y, Subar AF, Hollenbeck A, Schatzkin A: Dietary Fiber Intake and Mortality in the NIH-AARP Diet and Health Study. Arch Intern Med. 2011, 171: 1061-1068.
Article
PubMed
PubMed Central
Google Scholar
Gemen R, de Vries JF, Slavin JL: Relationship between molecular structure of cereal dietary fiber and health effects: focus on glucose/insulin response and gut health. Nutr Rev. 2011, 69: 22-33. 10.1111/j.1753-4887.2010.00357.x.
Article
PubMed
Google Scholar
Slavin J: Whole grains and human health. Nutr Res Rev. 2004, 17: 99-110. 10.1079/NRR200374.
Article
PubMed
Google Scholar
Björck IME, Granfeldt YE, Liljeberg HGM, Tovar J, Asp N-G: Food properties affecting the digestion and absorption of carbohydrates. Am J Clin Nutr. 1994, 59 (suppl): 699S-705S.
PubMed
Google Scholar
Björck I, Östman E, Kristensen M, Mateo Anson N, Price RK, Haenen GRMM, Havenaar R, Bach Knudsen KE, Frid A, Mykkänen H, et al: Cereal grains for nutrition and health benefits: Overview of results from in vitro, animal and human studies in the HEALTHGRAIN project. Trends in Food Science & Technology. 2012, 25: 87-100. 10.1016/j.tifs.2011.11.005.
Article
Google Scholar
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI: Evolution of Mammals and Their Gut Microbes. Science. 2008, 320: 1647-1651. 10.1126/science.1155725.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flint HJ: The impact of nutrition on the human microbiome. Nutr Rev. 2012, 70: S10-S13.
Article
PubMed
Google Scholar
Round JL, Mazmanian SK: The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009, 9: 313-323. 10.1038/nri2515.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT: Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5. Science. 2010, 328: 228-231. 10.1126/science.1179721.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harte AL, Varma MC, Tripathi G, McGee KC, Al-Daghri NM, Al-Attas OS, Sabico S, O’Hare JP, Ceriello A, Saravanan P, et al: High Fat Intake Leads to Acute Postprandial Exposure to Circulating Endotoxin in Type 2 Diabetic Subjects. Diabetes Care. 2012, 35: 375-382. 10.2337/dc11-1593.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erridge C, Attina T, Spickett CM, Webb DJ: A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007, 86: 1286-1292.
CAS
PubMed
Google Scholar
Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, et al: Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009, 58: 1091-1103. 10.1136/gut.2008.165886.
Article
CAS
PubMed
PubMed Central
Google Scholar
Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, Possemiers S, Van Holle A, François P, de Vos WM, et al: Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice. Diabetes. 2011, 60: 2775-2786. 10.2337/db11-0227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cani P, Neyrinck A, Fava F, Knauf C, Burcelin R, Tuohy K, Gibson G, Delzenne N: Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007, 50: 2374-2383. 10.1007/s00125-007-0791-0.
Article
CAS
PubMed
Google Scholar
Lutsey PL, Jacobs DR, Kori S, Mayer-Davis E, Shea S, Steffen LM, Szklo M, Tracy R: Whole grain intake and its cross-sectional association with obesity, insulin resistance, inflammation, diabetes and subclinical CVD: The MESA Study. Br J Nutr. 2007, 98: 397-405. 10.1017/S0007114507700715.
Article
CAS
PubMed
Google Scholar
Nilsson AC, Ostman EM, Holst JJ, Bjorck IM: Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast. J Nutr. 2008, 138: 732-739.
CAS
PubMed
Google Scholar
Thorburn A, Muir J, Proietto J: Carbohydrate fermentation decreases hepatic glucose output in healthy subjects. Metabolism. 1993, 42: 780-785. 10.1016/0026-0495(93)90249-N.
Article
CAS
PubMed
Google Scholar
Nilsson AC, Ostman EM, Granfeldt Y, Bjorck IM: Effect of cereal test breakfasts differing in glycemic index and content of indigestible carbohydrates on daylong glucose tolerance in healthy subjects. Am J Clin Nutr. 2008, 87: 645-654.
CAS
PubMed
Google Scholar
Nilsson A, Ostman E, Preston T, Bjorck I: Effects of GI vs content of cereal fibre of the evening meal on glucose tolerance at a subsequent standardized breakfast. Eur J Clin Nutr. 2008, 62: 712-720. 10.1038/sj.ejcn.1602784.
Article
CAS
PubMed
Google Scholar
Torekov SS, Madsbad S, Holst JJ: Obesity - an indication for GLP-1 treatment? Obesity pathophysiology and GLP-1 treatment potential. Obes Rev. 2011, 12: 593-601. 10.1111/j.1467-789X.2011.00860.x.
Article
CAS
PubMed
Google Scholar
Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM: Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr. 2009, 90: 1236-1243. 10.3945/ajcn.2009.28095.
Article
CAS
PubMed
Google Scholar
Aaboe K, Krarup T, Madsbad S, Holst JJ: GLP-1: physiological effects and potential therapeutic applications. Diabetes, Obesity and Metabolism. 2008, 10: 994-1003. 10.1111/j.1463-1326.2008.00853.x.
Article
CAS
PubMed
Google Scholar
Björck IME, Siljeström MA: In-vivo and in-vitro digestability of starch in autoclaved pea and potatoe products. J Sci Food Agric. 1992, 58: 541-553. 10.1002/jsfa.2740580414.
Article
Google Scholar
Holm J, Björck IME, Drews A, Asp N-G: A rapid method for the analysis of starch. Starch/Stärke. 1986, 38: 224-226.
Article
CAS
Google Scholar
Åkerberg AK, Liljeberg HG, Granfeldt YE, Drews AW, Björck IM: An in vitro method, based on chewing, to predict resistant starch content in foods allows parallel determination of potentially available starch and dietary fiber. J Nutr. 1998, 128: 651-660.
PubMed
Google Scholar
Asp N-G, Johansson C-G, Hallmer H, Siljeström M: Rapid enzymatic assay of insoluble and soluble dietary fiber. J Agric Food Chem. 1983, 31: 476-482. 10.1021/jf00117a003.
Article
CAS
PubMed
Google Scholar
Rosén LAH, Östman EM, Björck IME: Postprandial Glycemia, Insulinemia, and Satiety Responses in Healthy Subjects after Whole Grain Rye Bread Made from Different Rye Varieties. 2. J Agric Food Chem. 2011, 59: 12149-12154. 10.1021/jf2019837.
Article
PubMed
Google Scholar
Wolever TMS, Jenkins DJA, Ocana AM, Rao VA, Collier GR: Second-meal effect: low-glycemic-index foods eaten at dinner improve subsequent breakfast glycemic response. Am J Clin Nutr. 1988, 48: 1041-1047.
CAS
PubMed
Google Scholar
Priebe MG, Wang H, Weening D, Schepers M, Preston T, Vonk RJ: Factors related to colonic fermentation of nondigestible carbohydrates of a previous evening meal increase tissue glucose uptake and moderate glucose-associated inflammation. Am J Clin Nutr. 2010, 91: 90-97. 10.3945/ajcn.2009.28521.
Article
CAS
PubMed
Google Scholar
Cani PD, Hoste S, Guiot Y, Delzenne NM: Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br J Nutr. 2007, 98: 32-37. 10.1017/S0007114507691648.
Article
CAS
PubMed
Google Scholar
Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM: Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012, 61: 364-371. 10.2337/db11-1019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flint A, Raben A, Astrup A, Holst JJ: Glucagon-like Peptide 1 Promotes Satiety and Suppresses Energy Intake in Humans. J Clin Invest. 1998, 101: 515-520. 10.1172/JCI990.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verdich C, Flint A, Gutzwiller J-P, Naslund E, Beglinger C, Hellstrom PM, Long SJ, Morgan LM, Holst JJ, Astrup A: A Meta-Analysis of the Effect of Glucagon-Like Peptide-1 (7–36) Amide on Ad Libitum Energy Intake in Humans. J Clin Endocrinol Metab. 2001, 86: 4382-4389. 10.1210/jc.86.9.4382.
CAS
PubMed
Google Scholar
Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR: Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001, 86: 5992-10.1210/jc.86.12.5992.
Article
CAS
PubMed
Google Scholar
Tarini J, Wolever TMS: The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Applied Physiology, Nutrition & Metabolism. 2010, 35: 9-16. 10.1139/H09-119.
Article
CAS
Google Scholar
Holst JJ, Deacon CF, Vilsboll T, Krarup T, Madsbad S: Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol Med. 2008, 14: 161-168. 10.1016/j.molmed.2008.01.003.
Article
CAS
PubMed
Google Scholar
Asmar M: New physiological effects of the incretin hormones GLP-1 and GIP. Dan Med Bull. 2011, 58: B4248-
PubMed
Google Scholar
Zander M, Madsbad S, Madsen JL, Holst JJ: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002, 359: 824-830. 10.1016/S0140-6736(02)07952-7.
Article
CAS
PubMed
Google Scholar
Robertson MD: Metabolic cross talk between the colon and the periphery: implications for insulin sensitivity. Proc Nutr Soc. 2007, 66: 351-361. 10.1017/S0029665107005617.
Article
CAS
Google Scholar
Belfort R, Mandarino L, Kashyap S, Wirfel K, Pratipanawatr T, Berria R, DeFronzo RA, Cusi K: Dose–response Effect of Elevated Plasma Free Fatty Acid on Insulin Signaling. Diabetes. 2005, 54: 1640-1648. 10.2337/diabetes.54.6.1640.
Article
CAS
PubMed
Google Scholar
Wellen KE, Hotamisligil GS: Inflammation, stress, and diabetes. J Clin Invest. 2005, 115: 1111-1119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yannakoulia M, Yiannakouris N, Melistas L, Kontogianni MD, Malagaris I, Mantzoros CS: A dietary pattern characterized by high consumption of whole-grain cereals and low-fat dairy products and low consumption of refined cereals is positively associated with plasma adiponectin levels in healthy women. Metabolism. 2008, 57: 824-830. 10.1016/j.metabol.2008.01.027.
Article
CAS
PubMed
Google Scholar
Vaiopoulos AG, Marinou K, Christodoulides C, Koutsilieris M: The role of adiponectin in human vascular physiology. Int J Cardiol. 2012, 155: 188-193. 10.1016/j.ijcard.2011.07.047.
Article
PubMed
Google Scholar
Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA: Hypoadiponectinemia in Obesity and Type 2 Diabetes: Close Association with Insulin Resistance and Hyperinsulinemia. J Clin Endocrinol Metab. 2001, 86: 1930-1935. 10.1210/jc.86.5.1930.
Article
CAS
PubMed
Google Scholar
Lihn AS, Pedersen SB, Richelsen B: Adiponectin: action, regulation and association to insulin sensitivity. Obesity Reviews. 2005, 6: 13-21. 10.1111/j.1467-789X.2005.00159.x.
Article
CAS
PubMed
Google Scholar
Carlson J, Turpin A, Wiebke G, Hunt S, Adams T: Pre- and post- prandial appetite hormone levels in normal weight and severely obese women. Nutr Metab. 2009, 6: 32-10.1186/1743-7075-6-32.
Article
Google Scholar
English PJ, Coughlin SR, Hayden K, Malik IA, Wilding JPH: Plasma Adiponectin Increases Postprandially in Obese, but not in Lean, Subjects. Obesity. 2003, 11: 839-844. 10.1038/oby.2003.115.
Article
Google Scholar