Huang Y, Zhang YH, Chi ZP, Huang R, Huang H, Liu G, et al. The handling of oxalate in the body and the origin of oxalate in calcium oxalate stones. Urol Int. 2020;104:167–76.
Article
CAS
PubMed
Google Scholar
Robijn S, Hoppe B, Vervaet BA, D'Haese PC, Verhulst A. Hyperoxaluria: a gut-kidney axis? Kidney Int. 2011;80:1146–58.
Article
CAS
PubMed
Google Scholar
Mookadam F, Smith T, Jiamsripong P, Moustafa SE, Monico CG, Lieske JC, et al. Cardiac abnormalities in primary hyperoxaluria. Circ J. 2010;74:2403–9.
Article
PubMed
PubMed Central
Google Scholar
Khand FD, Gordge MP, Robertson WG, Noronha-Dutra AA, Hothersall JS. Mitochondrial superoxide production during oxalate-mediated oxidative stress in renal epithelial cells. Free Radic Biol Med. 2002;32:1339–50.
Article
CAS
PubMed
Google Scholar
Scheid C, Koul H, Hill WA, Luber-Narod J, Kennington L, Honeyman T, et al. Oxalate toxicity in LLC-PK1 cells: role of free radicals. Kidney Int. 1996;49:413–9.
Article
CAS
PubMed
Google Scholar
Mulay SR, Honarpisheh MM, Foresto-Neto O, Shi C, Desai J, Zhao ZB, et al. Mitochondria permeability transition versus Necroptosis in oxalate-induced AKI. J Am Soc Nephrol. 2019;30:1857–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Umekawa T, Chegini N, Khan SR. Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. Kidney Int. 2002;61:105–12.
Article
CAS
PubMed
Google Scholar
Recht PA, Tepedino GJ, Siecke NW, Buckley MT, Mandeville JT, Maxfield FR, et al. Oxalic acid alters intracellular calcium in endothelial cells. Atherosclerosis. 2004;173:321–8.
Article
CAS
PubMed
Google Scholar
Crenshaw BL, McMartin KE. Calcium oxalate monohydrate is associated with endothelial cell toxicity but not with reactive oxygen species accumulation. Cardiovasc Toxicol. 2020;20:593–603.
Article
CAS
PubMed
Google Scholar
Sun K, Tang X, Song S, Gao Y, Yu H, Sun N, et al. Hyperoxalemia leads to oxidative stress in endothelial cells and mice with chronic kidney disease. Kidney Blood Press Res. 2021;46:377–86.
Article
CAS
PubMed
Google Scholar
Holmes RP, Kennedy M. Estimation of the oxalate content of foods and daily oxalate intake. Kidney Int. 2000;57:1662–7.
Article
CAS
PubMed
Google Scholar
Taylor EN, Curhan GC. Oxalate intake and the risk for nephrolithiasis. J Am Soc Nephrol. 2007;18:2198–204.
Article
CAS
PubMed
Google Scholar
Siener R, Hönow R, Voss S, Seidler A, Hesse A. Oxalate content of cereals and cereal products. J Agric Food Chem. 2006;54:3008–11.
Article
CAS
PubMed
Google Scholar
Siener R, Seidler A, Hönow R. Oxalate-rich foods. Food Sci Technol. 2020; 41: 169–173.
Mitchell T, Kumar P, Reddy T, Wood KD, Knight J, Assimos DG, et al. Dietary oxalate and kidney stone formation. Am J Physiol-Renal Physiol. 2019;316:F409–13.
Article
PubMed
Google Scholar
Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001;59:270–6.
Article
CAS
PubMed
Google Scholar
Assimos DG, Holmes RP. Role of diet in the therapy of urolithiasis. Urol Clin North Am. 2000;27:255–68.
Article
CAS
PubMed
Google Scholar
Lange JN, Wood KD, Mufarrij PW, Callahan MF, Easter L, Knight J, et al. The impact of dietary calcium and oxalate ratios on stone risk. Urology. 2012;79:1226–9.
Article
PubMed
Google Scholar
von Unruh GE, Voss S, Sauerbruch T, Hesse A. Dependence of oxalate absorption on the daily calcium intake. J Am Soc Nephrol. 2004;15:1567–73.
Article
Google Scholar
Alexander RT, Hemmelgarn BR, Wiebe N, Bello A, Samuel S, Klarenbach SW, et al. Kidney stones and cardiovascular events: a cohort study. Clin J Am Soc Nephrol. 2014;9:506–12.
Article
PubMed
Google Scholar
Peng J-P, Zheng H. Kidney stones may increase the risk of coronary heart disease and stroke: a PRISMA-compliant meta-analysis. Medicine. 2017;96:e7898.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azizi F, Zadeh-Vakili A, Takyar M. Review of rationale, design, and initial findings: Tehran lipid and glucose study. Int J Endocrinol Metab. 2018;16:e84777.
PubMed
PubMed Central
Google Scholar
Hosseini-Esfahani F, Moslehi N, Asghari G, Hosseinpour-Niazi S, Bahadoran Z, Yuzbashian E, et al. Nutrition and diabetes, cardiovascular and chronic kidney diseases: findings from 20 years of the Tehran lipid and glucose study. Int J Endocrinol Metab. 2018;16:e84791.
Article
PubMed
PubMed Central
Google Scholar
Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 2010;13:654–62.
Article
PubMed
Google Scholar
Asghari G, Rezazadeh A, Hosseini-Esfahani F, Mehrabi Y, Mirmiran P, Azizi F. Reliability, comparative validity and stability of dietary patterns derived from an FFQ in the Tehran lipid and glucose study. Br J Nutr. 2012;108:1109–17.
Article
CAS
PubMed
Google Scholar
Shaheen N, Bari L, Mannan M. Food composition table for Bangladesh: University of Dhaka; 2013.
Google Scholar
Hadaegh F, Harati H, Ghanbarian A, Azizi F. Association of total cholesterol versus other serum lipid parameters with the short-term prediction of cardiovascular outcomes: Tehran lipid and glucose study. Eur J Cardiovasc Prev Rehabil. 2006;13:571–7.
Article
PubMed
Google Scholar
Barkhordari M, Padyab M, Sardarinia M, Hadaegh F, Azizi F, Bozorgmanesh M. Survival regression modeling strategies in CVD prediction. Int J Endocrinol Metab. 2016;14:e32156.
Article
PubMed
PubMed Central
Google Scholar
Nejat A, Mirbolouk M, Mohebi R, Hasheminia M, Tohidi M, Saadat N, et al. Changes in lipid measures and incident coronary heart disease: Tehran Lipid & Glucose Study. Clin Biochem. 2014;47:1239–44.
Article
CAS
PubMed
Google Scholar
Association AD. Standards of medical care in diabetes--2014. In: Diabetes care, vol. 37. p. S142014–S14.
Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–72.
Article
CAS
PubMed
Google Scholar
D'Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham heart study. Circulation. 2008;117:743–53.
Article
PubMed
Google Scholar
Khalili D, Hadaegh F, Soori H, Steyerberg EW, Bozorgmanesh M, Azizi F. Clinical usefulness of the Framingham cardiovascular risk profile beyond its statistical performance: the Tehran lipid and glucose study. Am J Epidemiol. 2012;176:177–86.
Article
PubMed
Google Scholar
Perkins NJ, Schisterman EF. The inconsistency of "optimal" cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol. 2006;163:670–5.
Article
PubMed
Google Scholar
Bargagli M, Tio MC, Waikar SS, Ferraro PM. Dietary oxalate intake and kidney outcomes. Nutrients. 2020;12:2673.
Article
CAS
PubMed Central
Google Scholar
Arafa A, Eshak ES, Iso H. Oxalates, urinary stones and risk of cardiovascular diseases. Med Hypotheses. 2020;137:109570.
Article
CAS
PubMed
Google Scholar
Ermer T, Eckardt K-U, Aronson PS, Knauf F. Oxalate, inflammasome, and progression of kidney disease. Curr Opin Nephrol Hypertens. 2016;25:363–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan SR. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl Androl Urol. 2014;3:256.
PubMed
PubMed Central
Google Scholar
El-Saygeh S, Roese D, Moe SM. Calciphylaxis or vascular oxalosis? Clin Kidney J. 2020;14:435–8.
Article
PubMed
PubMed Central
Google Scholar
Maldonado I, Prasad V, Reginato AJ. Oxalate crystal deposition disease. Curr Rheumatol Rep. 2002;4:257–64.
Article
PubMed
Google Scholar
Kumar P, Patel M, Oster RA, Yarlagadda V, Ambrosetti A, Assimos DG, et al. Dietary oxalate loading impacts monocyte metabolism and inflammatory signaling in humans. Front Immunol. 2021;12:617508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmes RP, Assimos DG. The impact of dietary oxalate on kidney stone formation. Urol Res. 2004;32:311–6.
Article
CAS
PubMed
Google Scholar
Holmes RP, Ambrosius WT, Assimos DG. Dietary oxalate loads and renal oxalate handling. J Urol. 2005;174(943–947):discussion 947.
Google Scholar
Hesse A, Schneeberger W, Engfeld S, Von Unruh GE, Sauerbruch T. Intestinal hyperabsorption of oxalate in calcium oxalate stone formers: application of a new test with [13C2]oxalate. J Am Soc Nephrol. 1999;10(Suppl 14):S329–33.
CAS
PubMed
Google Scholar
Mukaibo T, Munemasa T, George AT, Tran DT, Gao X, Herche JL, et al. The apical anion exchanger Slc26a6 promotes oxalate secretion by murine submandibular gland acinar cells. J Biol Chem. 2018;293:6259–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, et al. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet. 2006;38:474–8.
Article
CAS
PubMed
Google Scholar
Lange D. Dietary habits may influence oxalate degradation by intestinal Bacteria commentary on: the role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Urology. 2014;84:1263–4.
Article
PubMed
Google Scholar
Hatch M. Gut microbiota and oxalate homeostasis. Ann Transl Med. 2017;5:36.
Article
PubMed
PubMed Central
Google Scholar