United Nations Children’s Fund (UNICEF), World Health Organization, International Bank for Reconstruction and Development/The World Bank. Levels and trends in child malnutrition: key findings of the 2021 edition of the joint child malnutrition estimates. Geneva: World Health Organization; 2021.
Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382(9890):427–51. https://doi.org/10.1016/S0140-6736(13)60937-X.
Article
PubMed
Google Scholar
Talbert A, Thuo N, Karisa J, Chesaro C, Ohuma E, Ignas J, et al. Diarrhoea complicating severe acute malnutrition in Kenyan children: a prospective descriptive study of risk factors and outcome. PLoS One. 2012;7(6):e38321. https://doi.org/10.1371/journal.pone.0038321.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hossain MI, Haque R, Mondal D, Mahfuz M, Ahmed AS, Islam MM, et al. Undernutrition, vitamin a and iron deficiency are associated with impaired intestinal mucosal permeability in young Bangladeshi children assessed by lactulose/mannitol test. PLoS One. 2016;11(12):e0164447. https://doi.org/10.1371/journal.pone.0164447.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy J, Badaloo A, Chambers B, Forrester T, Wootton S, Jackson A. Maldigestion and malabsorption of dietary lipid during severe childhood malnutrition. Arch Dis Child. 2002;87(6):522–5. https://doi.org/10.1136/adc.87.6.522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boaz R, Joseph A, Kang G, Bose A. Intestinal permeability in normally nourished and malnourished children with and without diarrhea. Indian Pediatr. 2013;50(1):152–3. https://doi.org/10.1007/s13312-013-0030-3.
Article
CAS
PubMed
Google Scholar
Hossain MI, Nahar B, Hamadani JD, Ahmed T, Roy AK, Brown KH. Intestinal mucosal permeability of severely underweight and non-malnourished Bangladeshi children, and effects of nutritional rehabilitation. J Pediatr Gastroenterol Nutr. 2010;51(5):638–44. https://doi.org/10.1097/MPG.0b013e3181eb3128.
Article
PubMed
PubMed Central
Google Scholar
Love A. Metabolic response to malnutrition: its relevance to enteral feeding. Gut. 1986;27(Suppl 1):9–13. https://doi.org/10.1136/gut.27.Suppl_1.9.
Article
PubMed
PubMed Central
Google Scholar
Million M, Diallo A, Raoult D. Gut microbiota and malnutrition. Microb Pathog. 2017;106:127–38. https://doi.org/10.1016/j.micpath.2016.02.003.
Article
PubMed
Google Scholar
Platts-Mills JA, Taniuchi M, Uddin MJ, Sobuz SU, Mahfuz M, Gaffar SA, et al. Association between enteropathogens and malnutrition in children aged 6-23 mo in Bangladesh: a case-control study. Am J Clin Nutr. 2017;105(5):1132–8. https://doi.org/10.3945/ajcn.116.138800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hornstra G. Essential fatty acids in mothers and their neonates. Am J Clin Nutr. 2000;71(5):1262S–9S. https://doi.org/10.1093/ajcn/71.5.1262s.
Article
CAS
PubMed
Google Scholar
Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell. 2015;32(6):678–92. https://doi.org/10.1016/j.devcel.2015.01.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prentice AM, Paul AA. Fat and energy needs of children in developing countries. Am J Clin Nutr. 2000;72(5):1253s–65s.
Article
CAS
Google Scholar
Yaméogo CW, Cichon B, Fabiansen C, Rytter MJH, Faurholt-Jepsen D, Stark K, et al. Correlates of whole-blood polyunsaturated fatty acids among young children with moderate acute malnutrition. Nutr J. 2017;16(1):44. https://doi.org/10.1186/s12937-017-0264-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marín MC, De Tomás ME, Mercuri O, Fernández A, de Serres CT. Interrelationship between protein-energy malnutrition and essential fatty acid deficiency in nursing infants. Am J Clin Nutr. 1991;53(2):466–8. https://doi.org/10.1093/ajcn/53.2.466.
Article
PubMed
Google Scholar
Bartz S, Mody A, Hornik C, Bain J, Muehlbauer M, Kiyimba T, et al. Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. J Clin Endocrinol Metab. 2014;99(6):2128–37. https://doi.org/10.1210/jc.2013-4018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brewster DR, Manary M, Menzies I, O'loughlin E, Henry R. Intestinal permeability in kwashiorkor. Arch Dis Child. 1997;76(3):236–41. https://doi.org/10.1136/adc.76.3.236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kostecka M. Fatty acid composition of diets of early school-age children and its health implications. Pak J Med Sci. 2015;31(6):1467–71. https://doi.org/10.12669/pjms.316.7614.
Article
PubMed
PubMed Central
Google Scholar
World Health Organization. Management of severe malnutrition: a manual for physicians and other senior health workers. 1999. https://apps.who.int/iris/bitstream/handle/10665/41999/a57361.pdf;sequence=1, accessed 3 Aug 2020.
World Health Organization. Guideline: updates on the management of severe acute malnutrition in infants and children. Geneva: World Health Organization; 2013.
Google Scholar
Nel E. Severe acute malnutrition. Curr Opin Clin Nutr Metabolic Care. 2018;21(3):195–9. https://doi.org/10.1097/MCO.0000000000000465.
Article
CAS
Google Scholar
Weber JM, Ryan KN, Tandon R, Mathur M, Girma T, Steiner-Asiedu M, et al. Acceptability of locally produced ready-to-use therapeutic foods in Ethiopia, Ghana, Pakistan and India. Matern Child Nutr. 2017;13(2):e12250. https://doi.org/10.1111/mcn.12250.
Article
Google Scholar
Hossain MI, Huq S, Islam MM, Ahmed T. Acceptability and efficacy of ready-to-use therapeutic food using soy protein isolate in under-5 children suffering from severe acute malnutrition in Bangladesh: a double-blind randomized non-inferiority trial. Eur J Nutr. 2020;59(3):1149–61. https://doi.org/10.1007/s00394-019-01975-w.
Article
CAS
PubMed
Google Scholar
Ahmed T, Ali M, Ullah MM, Choudhury IA, Haque ME, Salam MA, et al. Mortality in severely malnourished children with diarrhoea and use of a standardised management protocol. Lancet. 1999;353(9168):1919–22. https://doi.org/10.1016/S0140-6736(98)07499-6.
Article
CAS
PubMed
Google Scholar
Hsieh J-C, Liu L, Zeilani M, Ickes S, Trehan I, Maleta K, et al. High oleic ready-to-use therapeutic food maintains docosahexaenoic acid status in severe malnutrition: a randomized, blinded trial. J Pediatr Gastroenterol Nutr. 2015;61(1):138–43. https://doi.org/10.1097/MPG.0000000000000741.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones KD, Ali R, Khasira MA, Odera D, West AL, Koster G, et al. Ready-to-use therapeutic food with elevated n-3 polyunsaturated fatty acid content, with or without fish oil, to treat severe acute malnutrition: a randomized controlled trial. BMC Med. 2015;13(1):93. https://doi.org/10.1186/s12916-015-0315-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darmstadt G, Saha S, Ahmed A, Khatun M, Chowdhury M. The skin as a potential portal of entry for invasive infections in neonates. Perinatology. 2003;5(5):205–12.
Google Scholar
Darmstadt G. The skin and nutritional disorders in the newborn. Eur J Pediatr Dermatol. 1998;8(4):221–8.
Google Scholar
Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta (BBA)-Molec cell biol. Lipids. 2014;1841(3):280–94.
CAS
Google Scholar
Elias P. The skin as an organ of protection. Dermatol General Med. 2003:107–18.
Darmstadt GL, Mao-Qiang M, Chi E, Saha SK, Ziboh VA, Black RE, et al. Impact of topical oils on the skin barrier: possible implications for neonatal health in developing countries. Acta Paediatr. 2002;91:1–9.
Article
Google Scholar
Fernandez A, Patkar S, Chawla C, Taskar T, Prabhu S. Oil application in preterm babies. A source of warmth and nutrition. Indian Pediatr. 1987;24(12):1111–6.
CAS
PubMed
Google Scholar
Prottey C, Hartop PJ, Press M. Correction of the cutaneous manifestations of essential fatty acid deficiency in man by application of sunflower-seed oil to the skin. J Invest Dermatol. 1975;64(4):228–34.
Article
CAS
Google Scholar
Darmstadt GL, Badrawi N, Law PA, Ahmed S, Bashir M, Iskander I, et al. Topically applied sunflower seed oil prevents invasive bacterial infections in preterm infants in Egypt: a randomized, controlled clinical trial. Pediatr Infect Dis J. 2004;23(8):719–25. https://doi.org/10.1097/01.inf.0000133047.50836.6f.
Article
PubMed
Google Scholar
Darmstadt GL, Saha SK, Ahmed ANU, Chowdhury MA, Law PA, Ahmed S, et al. Effect of topical treatment with skin barrier-enhancing emollients on nosocomial infections in preterm infants in Bangladesh: a randomised controlled trial. Lancet. 2005;365(9464):1039–45. https://doi.org/10.1016/S0140-6736(05)71140-5.
Article
CAS
PubMed
Google Scholar
Salam RA, Darmstadt GL, Bhutta ZA. Effect of emollient therapy on clinical outcomes in preterm neonates in Pakistan: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2015;100(3):F210–F5. https://doi.org/10.1136/archdischild-2014-307157.
Article
PubMed
Google Scholar
Salam RA, Das JK, Darmstadt GL, Bhutta ZA. Emollient therapy for preterm newborn infants–evidence from the developing world. BMC Public Health. 2013;13(S3):S31. https://doi.org/10.1186/1471-2458-13-S3-S31.
Article
PubMed
PubMed Central
Google Scholar
Darmstadt GL, Saha SK, Ahmed ANU, Choi Y, Chowdhury MA, Islam M, et al. Effect of topical emollient treatment of preterm neonates in Bangladesh on invasion of pathogens into the bloodstream. Pediatr Res. 2007;61(5):588–93. https://doi.org/10.1203/pdr.0b013e3180459f75.
Article
CAS
PubMed
Google Scholar
Darmstadt GL, Ahmed S, Ahmed ANU, Saha SK. Mechanism for prevention of infection in preterm neonates by topical emollients: a randomized, controlled clinical trial. Pediatr Infect Dis J. 2014;33(11):1124–7. https://doi.org/10.1097/INF.0000000000000423.
Article
PubMed
Google Scholar
Aberg KM, Man M-Q, Gallo RL, Ganz T, Crumrine D, Brown BE, et al. Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers. J Invest Dermatol. 2008;128(4):917–25. https://doi.org/10.1038/sj.jid.5701099.
Article
CAS
PubMed
Google Scholar
Elias P, Mao-Qiang M, Thornfeldt C, Feingold K. The epidermal permeability barrier: effects of physiologic and non-physiologic lipids. The Lanolin Book Hamburg. Germany: Beiersdorf AG; 1999. p. 253–79.
Google Scholar
Hanley K, Jiang Y, He SS, Friedman M, Elias PM, Bikle DD, et al. Keratinocyte differentiation is stimulated by activators of the nuclear hormone receptor PPARα. J Invest Dermatol. 1998;110(4):368–75. https://doi.org/10.1046/j.1523-1747.1998.00139.x.
Article
CAS
PubMed
Google Scholar
Schürer N, Schliep V, Williams ML. Differential utilization of linoleic and arachidonic acid by cultured human keratinocytes. Skin Pharmacol Physiol. 1995;8(1–2):30–40. https://doi.org/10.1159/000211328.
Article
Google Scholar
Fluhr JW, Man M-Q, Hachem J-P, Crumrine D, Mauro TM, Elias PM, et al. Topical peroxisome proliferator activated receptor activators accelerate postnatal stratum corneum acidification. J Invest Dermatol. 2009;129(2):365–74. https://doi.org/10.1038/jid.2008.218.
Article
CAS
PubMed
Google Scholar
Elias PM, Brown BE, Ziboh VA. The permeability barrier in essential fatty acid deficiency: evidence for a direct role for linoleic acid in barrier function. J Invest Dermatol. 1980;74(4):230–3. https://doi.org/10.1111/1523-1747.ep12541775.
Article
CAS
PubMed
Google Scholar
Prottey C, Hartop P, Black J, McCormack J. The repair of impaired epidermal barrier function in rats by the cutaneous application of linoleic acid. Br J Dermatol. 1976;94(1):13–21. https://doi.org/10.1111/j.1365-2133.1976.tb04336.x.
Article
CAS
PubMed
Google Scholar
Prottey C. Essential fatty acids and the skin. Br J Dermatol. 1976;94(5):579–87. https://doi.org/10.1111/j.1365-2133.1976.tb05151.x.
Article
CAS
PubMed
Google Scholar
Press M, Hartop P, Prottey C. Correction of essential fatty-acid deficiency in man by the cutaneous application of sunflower-seed oil. Lancet. 1974;303(7858):597–9. https://doi.org/10.1016/S0140-6736(74)92653-1.
Article
Google Scholar
Friedman Z, Shochat SJ, Maisels MJ. Correction of essential fatty acid deficiency in newborn infants by cutaneous application of sunflower seed oil. Pediatrics. 1976;58(5):650–4.
CAS
PubMed
Google Scholar
Fernandez A, Krishnamoorthy G, Patil N, Mondkar J, Swar B. Transcutaneous absorption of oil in preterm babies—a pilot study. Indian Pediatr. 2005;42(3):255–8.
CAS
PubMed
Google Scholar
Otto A, Du Plessis J, Wiechers J. Formulation effects of topical emulsions on transdermal and dermal delivery. Int J Cosmetic Sci. 2009;31(1):1–19. https://doi.org/10.1111/j.1468-2494.2008.00467.x.
Article
CAS
Google Scholar
Saunders J, Davis H, Coetzee L, Botha S, Kruger A, Grobler A. A novel skin penetration enhancer: evaluation by membrane diffusion and confocal microscopy. J Pharm Pharmaceutical Sci. 1999;2(3):99–107.
CAS
Google Scholar
Solanki K, Matnani M, Kale M, Joshi K, Bavdekar A, Bhave S, et al. Transcutaneous absorption of topically massaged oil in neonates. Indian Pediatr. 2005;42(10):998–1005.
PubMed
Google Scholar
Shahunja KM, Ahmed T, Hossain MI, Mahfuz M, Kendall L, Zhu X, Singh KP, et al. Topical emollient therapy in the management of severe acute malnutrition in under-two children: a randomised controlled clinical trial in Bangladesh. J Glob Health. 2020;10:010414.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc: Series B (Methodological). 1995;57(1):289–300.
Google Scholar
Jamieson AR, Giger ML, Drukker K, Li H, Yuan Y, Bhooshan N. Exploring nonlinear feature space dimension reduction and data representation in breast CADx with Laplacian eigenmaps and-SNE. Med Phys. 2010;37(1):339–51. https://doi.org/10.1118/1.3267037.
Article
PubMed
Google Scholar
Koletzko B, Decsi T. Fatty acid composition of plasma lipid classes in healthy subjects from birth to young adulthood. Eur J Pediatr. 1994;153(7):520–5. https://doi.org/10.1007/BF01957009.
Article
PubMed
Google Scholar
Babirekere-Iriso E, Lauritzen L, Mortensen CG, Rytter MJH, Mupere E, Namusoke H, et al. Essential fatty acid composition and correlates in children with severe acute malnutrition. Clin Nutr ESPEN. 2016;11:e40–e6. https://doi.org/10.1016/j.clnesp.2015.12.001.
Article
PubMed
Google Scholar
Burns-Whitmore B, Froyen E, Heskey C, Parker T, San PG. Alpha-linolenic and linoleic fatty acids in the vegan diet: do they require dietary reference intake/adequate intake special consideration? Nutrients. 2019;11(10):2365. https://doi.org/10.3390/nu11102365.
Article
CAS
PubMed Central
Google Scholar
Man MM, Feingold KR, Thornfeldt CR, Elias PM. Optimization of physiological lipid mixtures for barrier repair. J Invest Dermatol. 1996;106(5):1096–101.
Article
Google Scholar
Goldyne ME. Prostaglandins and cutaneous inflammation. J Invest Dermatol. 1975;64(6):377–85. https://doi.org/10.1111/1523-1747.ep12512319.
Article
CAS
PubMed
Google Scholar
Hanley K, Jiang Y, Crumrine D, Bass NM, Appel R, Elias PM, et al. Activators of the nuclear hormone receptors PPARalpha and FXR accelerate the development of the fetal epidermal permeability barrier. J Clin Investigation. 1997;100(3):705–12. https://doi.org/10.1172/JCI119583.
Article
CAS
Google Scholar
Houtsmuller U, Van der Beek A. Effects of topical application of fatty acids. Progr Lipid Res. 1981;20:219–24. https://doi.org/10.1016/0163-7827(81)90041-2.
Article
CAS
Google Scholar
Vaivre-Douret L, Oriot D, Blossier P, Py A, Kasolter-Péré M, Zwang J. The effect of multimodal stimulation and cutaneous application of vegetable oils on neonatal development in preterm infants: a randomized controlled trial. Child Care Health Dev. 2009;35(1):96–105.
Article
CAS
Google Scholar
Brenna JT, Akomo P, Bahwere P, Berkley JA, Calder PC, Jones KD, et al. Balancing omega-6 and omega-3 fatty acids in ready-to-use therapeutic foods (RUTF). BMC Med. 2015;13(1):117. https://doi.org/10.1186/s12916-015-0352-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darmstadt GL, Khan NZ, Rosenstock S, Muslima H, Parveen M, Mahmood W, Ahmed ASMNU, Chowdhury MAKA, Law PA, Zeger S, Saha SK. Impact of emollient therapy for preterm infants in the neonatal period on child neurodevelopment in Bangladesh. J Health Popul Nutr 2021;40(1):24. https://doi.org/10.1186/s41043-021-00248-9.
Shaheen N, Rahim ATMA, Mohiduzzaman M, Banu CP, Bari ML, Tukun AB, et al. Food composition table for Bangladesh. Institute of Nutrition and Food Science, Centre for Advanced Research in sciences, University of Dhaka https://www.fao.org/fileadmin/templates/food_composition/documents/FCT_10_2_14_final_version.pdf, accessed 18 March 2021.
Katan M, Deslypere J, Van Birgelen A, Penders M, Zegwaard M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res. 1997;38(10):2012–22. https://doi.org/10.1016/S0022-2275(20)37132-7.
Article
CAS
PubMed
Google Scholar
Sun Q, Ma J, Campos H, Hankinson SE, Hu FB. Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am J Clin Nutr. 2007;86(1):74–81. https://doi.org/10.1093/ajcn/86.1.74.
Article
CAS
PubMed
Google Scholar
Álvarez MJ, Fernández D, Gómez-Salgado J, Rodríguez-González D, Rosón M, Lapeña S. The effects of massage therapy in hospitalized preterm neonates: a systematic review. Int J Nurs Stud. 2017;69:119–36. https://doi.org/10.1016/j.ijnurstu.2017.02.009.
Article
PubMed
Google Scholar
Pados BF, McGlothen-Bell K. Benefits of infant massage for infants and parents in the NICU. Nurs Womens Health. 2019;23(3):265–71. https://doi.org/10.1016/j.nwh.2019.03.004.
Article
PubMed
Google Scholar
Vickers A, Ohlsson A, Lacy JB, Horsley A. Massage for promoting growth and development of preterm and/or low birth-weight infants. Cochrane Database Syst Rev. 2004;(2):CD000390.
LeFevre A, Shillcutt SD, Saha SK, Ahmed A, Ahmed S, Chowdhury M, et al. Cost-effectiveness of skin-barrier-enhancing emollients among preterm infants in Bangladesh. Bull World Health Organ. 2010;88(2):104–12. https://doi.org/10.2471/BLT.08.058230.
Article
PubMed
PubMed Central
Google Scholar