Mantovani A, Byrne CD, Bonora E, Targher G. Nonalcoholic fatty liver disease and risk of incident type 2 diabetes: a meta-analysis. Diabetes Care. 2018;41(2):372–82. https://doi.org/10.2337/dc17-1902.
Article
CAS
PubMed
Google Scholar
Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ (Clinical research ed). 2017;359:j5024.
Article
Google Scholar
Wijarnpreecha K, Thongprayoon C, Ungprasert P. Coffee consumption and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2017;29(2):e8–e12. https://doi.org/10.1097/MEG.0000000000000776.
Article
CAS
Google Scholar
Dranoff JA, Feld JJ, Lavoie ÉG, Fausther M. How does coffee prevent liver fibrosis? Biological plausibility for recent epidemiological observations. Hepatology. 2014;60(2):464–7. https://doi.org/10.1002/hep.27032.
Article
PubMed
PubMed Central
Google Scholar
Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care. 2014;37(2):569–86. https://doi.org/10.2337/dc13-1203.
Article
PubMed
PubMed Central
Google Scholar
Setiawan VW, Wilkens LR, Lu SC, Hernandez BY, Le Marchand L, Henderson BE. Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort. Gastroenterology. 2015;148(1):118–25. https://doi.org/10.1053/j.gastro.2014.10.005.
Article
CAS
PubMed
Google Scholar
Shen H, Rodriguez AC, Shiani A, Lipka S, Shahzad G, Kumar A, et al. Association between caffeine consumption and nonalcoholic fatty liver disease: a systemic review and meta-analysis. Ther Adv Gastroenterol. 2016;9(1):113–20. https://doi.org/10.1177/1756283X15593700.
Article
CAS
Google Scholar
Wang H, Guan W, Yang W, Wang Q, Zhao H, Yang F, et al. Caffeine inhibits the activation of hepatic stellate cells induced by acetaldehyde via adenosine A2A receptor mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK signal pathway. PloS one. 2014;9(3).
Kennedy OJ, Roderick P, Buchanan R, Fallowfield JA, Hayes PC, Parkes J. Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: a systematic review and dose–response meta-analysis. BMJ Open. 2017;7(5).
Birerdinc A, Stepanova M, Pawloski L, Younossi Z. Caffeine is protective in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2012;35(1):76–82. https://doi.org/10.1111/j.1365-2036.2011.04916.x.
Article
CAS
PubMed
Google Scholar
Kennedy OJ, Roderick P, Poole R, Parkes J. Coffee, caffeine and non-alcoholic fatty liver disease? Ther Adv Gastroenterol. 2016;9(3):417–8. https://doi.org/10.1177/1756283X16636765.
Article
CAS
Google Scholar
Reis CE, Dórea JG, da Costa TH. Effects of coffee consumption on glucose metabolism: a systematic review of clinical trials. J Tradit Complement Med. 2018.
Costabile A, Sarnsamak K, Hauge-Evans AC. Coffee, type 2 diabetes and pancreatic islet function–a mini-review. J Funct Foods. 2018;45:409–16. https://doi.org/10.1016/j.jff.2018.04.011.
Article
CAS
Google Scholar
Bambha K, Wilson LA, Unalp A, Loomba R, Neuschwander-Tetri BA, Brunt EM, et al. Coffee consumption in NAFLD patients with lower insulin resistance is associated with lower risk of severe fibrosis. Liver Int. 2014;34(8):1250–8. https://doi.org/10.1111/liv.12379.
Article
CAS
Google Scholar
Hayat U, Siddiqui AA, Okut H, Afroz S, Tasleem S, Haris A. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: a meta-analysis of 11 epidemiological studies. Ann Hepatol. 2020;20:100254.
Article
Google Scholar
Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95. https://doi.org/10.1249/01.MSS.0000078924.61453.FB.
Article
PubMed
Google Scholar
Eslamparast T, Poustchi H, Zamani F, Sharafkhah M, Malekzadeh R, Hekmatdoost A. Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr. 2014;99(3):535–42. https://doi.org/10.3945/ajcn.113.068890.
Article
CAS
PubMed
Google Scholar
Chen Y-P, Lu F-B, Hu Y-B, Xu L-M, Zheng M-H, Hu E-D. A systematic review and a dose–response meta-analysis of coffee dose and nonalcoholic fatty liver disease. Clinical Nutrition; 2018.
Google Scholar
Veronese N, Notarnicola M, Cisternino A, Reddavide R, Inguaggiato R, Guerra V, et al. Coffee intake and liver steatosis: a population study in a mediterranean area. Nutrients. 2018;10(1):89. https://doi.org/10.3390/nu10010089.
Article
CAS
PubMed Central
Google Scholar
Chen S, Teoh NC, Chitturi S, Farrell GC. Coffee and non-alcoholic fatty liver disease: brewing evidence for hepatoprotection? J Gastroenterol Hepatol. 2014;29(3):435–41. https://doi.org/10.1111/jgh.12422.
Article
PubMed
Google Scholar
Marventano S, Salomone F, Godos J, Pluchinotta F, Del Rio D, Mistretta A, et al. Coffee and tea consumption in relation with non-alcoholic fatty liver and metabolic syndrome: a systematic review and meta-analysis of observational studies. Clin Nutr. 2016;35(6):1269–81. https://doi.org/10.1016/j.clnu.2016.03.012.
Article
CAS
PubMed
Google Scholar
Noordzij M, Uiterwaal CS, Arends LR, Kok FJ, Grobbee DE, Geleijnse JM. Blood pressure response to chronic intake of coffee and caffeine: a meta-analysis of randomized controlled trials. LWW; 2005.
Google Scholar
Steffen M, Kuhle C, Hensrud D, Erwin PJ, Murad MH. The effect of coffee consumption on blood pressure and the development of hypertension: a systematic review and meta-analysis. J Hypertens. 2012;30(12):2245–54. https://doi.org/10.1097/HJH.0b013e3283588d73.
Article
CAS
PubMed
Google Scholar
Zhang Z, Hu G, Caballero B, Appel L, Chen L. Habitual coffee consumption and risk of hypertension: a systematic review and meta-analysis of prospective observational studies. Am J Clin Nutr. 2011;93(6):1212–9. https://doi.org/10.3945/ajcn.110.004044.
Article
CAS
PubMed
Google Scholar
D’Elia L, La Fata E, Galletti F, Scalfi L, Strazzullo P. Coffee consumption and risk of hypertension: a dose–response meta-analysis of prospective studies. Eur J Nutr. 2019;58(1):271–80. https://doi.org/10.1007/s00394-017-1591-z.
Article
CAS
PubMed
Google Scholar
Xie C, Cui L, Zhu J, Wang K, Sun N, Sun C. Coffee consumption and risk of hypertension: a systematic review and dose–response meta-analysis of cohort studies. J Hum Hypertens. 2018;32(2):83–93. https://doi.org/10.1038/s41371-017-0007-0.
Article
PubMed
Google Scholar
Wedick NM, Brennan AM, Sun Q, Hu FB, Mantzoros CS, van Dam RM. Effects of caffeinated and decaffeinated coffee on biological risk factors for type 2 diabetes: a randomized controlled trial. Nutr J. 2011;10(1):93. https://doi.org/10.1186/1475-2891-10-93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kempf K, Herder C, Erlund I, Kolb H, Martin S, Carstensen M, et al. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr. 2010;91(4):950–7. https://doi.org/10.3945/ajcn.2009.28548.
Article
CAS
PubMed
Google Scholar
Corrêa TA, Rogero MM, Mioto BM, Tarasoutchi D, Tuda VL, César LA, et al. Filtered coffee increases cholesterol and inflammation biomarkers independent of roasting degree: a clinical trial. Nutrition. 2013;29(7–8):977–81. https://doi.org/10.1016/j.nut.2013.01.003.
Article
CAS
PubMed
Google Scholar
Paiva C, Beserra B, Reis C, Dorea J, Da Costa T, Amato A. Consumption of coffee or caffeine and serum concentration of inflammatory markers: a systematic review. Crit Rev Food Sci Nutr. 2019;59(4):652–63. https://doi.org/10.1080/10408398.2017.1386159.
Article
CAS
PubMed
Google Scholar
Zhang Y, Zhang D-Z. Associations of coffee consumption with circulating level of adiponectin and leptin. A meta-analysis of observational studies. Int J Food Sci Nutr. 2018;69(8):1003–12. https://doi.org/10.1080/09637486.2018.1445202.
Article
CAS
PubMed
Google Scholar
Williams CJ, Fargnoli JL, Hwang JJ, Van Dam RM, Blackburn GL, Hu FB, et al. Coffee consumption is associated with higher plasma adiponectin concentrations in women with or without type 2 diabetes: a prospective cohort study. Diabetes Care. 2008;31(3):504–7. https://doi.org/10.2337/dc07-1952.
Article
PubMed
Google Scholar
Rebello SA, Chen CH, Naidoo N, Xu W, Lee J, Chia KS, et al. Coffee and tea consumption in relation to inflammation and basal glucose metabolism in a multi-ethnic Asian population: a cross-sectional study. Nutr J. 2011;10(1):61. https://doi.org/10.1186/1475-2891-10-61.
Article
PubMed
PubMed Central
Google Scholar
Shahmohammadi HA, Hosseini SA, Hajiani E, Malehi AS, Alipour M. Effects of green coffee bean extract supplementation on patients with non-alcoholic fatty liver disease: a randomized clinical trial. Hepatitis Monthly. 2017;17(4).
Agudelo-Ochoa GM, Pulgarín-Zapata IC, Velásquez-Rodriguez CM, Duque-Ramírez M, Naranjo-Cano M, Quintero-Ortiz MM, et al. Coffee consumption increases the antioxidant capacity of plasma and has no effect on the lipid profile or vascular function in healthy adults in a randomized controlled trial. J Nutr. 2016;146(3):524–31. https://doi.org/10.3945/jn.115.224774.
Article
CAS
PubMed
Google Scholar
Rustenbeck I, Lier-Glaubitz V, Willenborg M, Eggert F, Engelhardt U, Jörns A. Effect of chronic coffee consumption on weight gain and glycaemia in a mouse model of obesity and type 2 diabetes. Nutr Diabetes. 2014;4(6):e123. https://doi.org/10.1038/nutd.2014.19.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacKenzie T, Comi R, Sluss P, Keisari R, Manwar S, Kim J, et al. Metabolic and hormonal effects of caffeine: randomized, double-blind, placebo-controlled crossover trial. Metabolism. 2007;56(12):1694–8. https://doi.org/10.1016/j.metabol.2007.07.013.
Article
CAS
PubMed
Google Scholar
van Dam RM, Pasman WJ, Verhoef P. Effects of coffee consumption on fasting blood glucose and insulin concentrations: randomized controlled trials in healthy volunteers. Diabetes Care. 2004;27(12):2990–2. https://doi.org/10.2337/diacare.27.12.2990.
Article
PubMed
Google Scholar
Rakvaag E, Dragsted LO. Acute effects of light and dark roasted coffee on glucose tolerance: a randomized, controlled crossover trial in healthy volunteers. Eur J Nutr. 2016;55(7):2221–30. https://doi.org/10.1007/s00394-015-1032-9.
Article
CAS
PubMed
Google Scholar
Shi X, Xue W, Liang S, Zhao J, Zhang X. Acute caffeine ingestion reduces insulin sensitivity in healthy subjects: a systematic review and meta-analysis. Nutr J. 2016;15(1):103. https://doi.org/10.1186/s12937-016-0220-7.
Article
PubMed
PubMed Central
Google Scholar
da Silva LA, Wouk J, Weber V, Eltchechem C, de Almeida P, Martins JCL. Mechanisms and biological effects of caffeine on substrate metabolism homeostasis: a systematic review. J Appl Pharm Sci. 2017;7:215.
Google Scholar
Bruton JD, Lemmens R, Shi C-L, PERSSON-SJÖGREN S, WESTERBLAD H, Ahmed M, et al. Ryanodine receptors of pancreatic β-cells mediate a distinct context-dependent signal for insulin secretion. FASEB J. 2003;17(2):301–3. https://doi.org/10.1096/fj.02-0481fje.
Article
CAS
PubMed
Google Scholar
Jee SH, He J, Appel LJ, Whelton PK, Suh I, Klag MJ. Coffee consumption and serum lipids: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol. 2001;153(4):353–62. https://doi.org/10.1093/aje/153.4.353.
Article
CAS
PubMed
Google Scholar
d'Amicis A, Scaccini C, Tomassi G, Anaclerio M, Stornelli R, Bernini A. Italian style brewed coffee: effect on serum cholesterol in young men. Int J Epidemiol. 1996;25(3):513–20. https://doi.org/10.1093/ije/25.3.513.
Article
CAS
PubMed
Google Scholar
Burr ML, Limb E, Sweetnam PM, Fehily A, Amarah L, Hutchings A. Instant coffee and cholesterol: a randomised controlled trial. Eur J Clin Nutr (United Kingdom). 1995.
Cai L, Ma D, Zhang Y, Liu Z, Wang P. The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2012;66(8):872–7. https://doi.org/10.1038/ejcn.2012.68.
Article
CAS
PubMed
Google Scholar
Yukawa G, Mune M, Otani H, Tone Y, Liang X-M, Iwahashi H, et al. Effects of coffee consumption on oxidative susceptibility of low-density lipoproteins and serum lipid levels in humans. Biochem Mosc. 2004;69(1):70–4. https://doi.org/10.1023/B:BIRY.0000016354.05438.0f.
Article
CAS
Google Scholar
Silvério ASD, Pereira RGFA, Lima AR, de Araújo Paula FB, Rodrigues MR, Baldissera L, et al. The effects of the decaffeination of coffee samples on platelet aggregation in hyperlipidemic rats. Plant Foods Hum Nutr. 2013;68(3):268–73. https://doi.org/10.1007/s11130-013-0365-x.
Article
CAS
Google Scholar
Grioni S, Agnoli C, Sieri S, Pala V, Ricceri F, Masala G, et al. Espresso coffee consumption and risk of coronary heart disease in a large Italian cohort. PLoS One. 2015;10(5):e0126550. https://doi.org/10.1371/journal.pone.0126550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei M, Macera CA, Hornung CA, Blair SN. The impact of changes in coffee consumption on serum cholesterol. J Clin Epidemiol. 1995;48(10):1189–96. https://doi.org/10.1016/0895-4356(95)00023-W.
Article
CAS
PubMed
Google Scholar
Shirlow MJ, Mathers CD. Caffeine consumption and serum cholesterol levels. Int J Epidemiol. 1984;13(4):422–7. https://doi.org/10.1093/ije/13.4.422.
Article
CAS
PubMed
Google Scholar
Kobayashi-Hattori K, Mogi A, Matsumoto Y, Takita T. Effect of caffeine on the body fat and lipid metabolism of rats fed on a high-fat diet. Biosci Biotechnol Biochem. 2005;69(11):2219–23. https://doi.org/10.1271/bbb.69.2219.
Article
CAS
PubMed
Google Scholar