Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nature Immunol. 2011;12:5–9.
Article
CAS
Google Scholar
Diet STD. Gut microbiota in health and disease. Nestle Nutr Inst Workshop Ser. 2017;88:117–26.
Article
Google Scholar
Graf D, Cagno RD, Fåk F, Flint HJ, Nyman M, Saarela M, Watzl B. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis. 2015;26:e26164.
Google Scholar
Filippo CD, Cavalieri D, Paola MD, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. 2010;107:14691–6.
Article
Google Scholar
Donovan SM. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health. Gut Microbes. 2017;8:75–81.
Article
Google Scholar
Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36.
Article
CAS
Google Scholar
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200.
Article
Google Scholar
Spiller GA, Story JA, Furumoto EJ, Chezem JC, Spiller M. Effect of tartaric acid and dietary fibre from sun-dried raisins on colonic function and on bile acid and volatile fatty acid excretion in healthy adults. Br J Nutr. 2003;90:803–7.
Article
CAS
Google Scholar
Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M, Fythe MD, Kumar MV, Gewirtz AT. Fiber-mediated nourishment of gut microbiota protects against Diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe. 2018;23:41–53.
Article
CAS
Google Scholar
Restani P, Frigerio G, Colombo F, de Sousa LP, Altindişli A, Pastor RF, Di Lorenzo C. Raisins in human health: a review. BIO Web of Conferences 2017;7:e04005.
Fulgoni VL 3rd, Painter J, Carughi A. Association of raisin consumption with nutrient intake, diet quality, and health risk factors in US adults: National Health and nutrition examination survey 2001-2012. Food Nutr Res. 2017;61:e1378567.
Article
Google Scholar
Spiller GA, Story JA, Lodics TA, Pollack M, Monyan S, Butterfield G, Spiller M. Effect of sun-dried raisins on bile acid excretion, intestinal transit time, and fecal weight: a dose–response study. J Med Food. 2004;6:87–91.
Article
Google Scholar
Bell SJ. A review of dietary fiber and health: focus on raisins. J Med Food. 2011;14:877–83.
Article
CAS
Google Scholar
Carughi A. Raisins as a source of prebiotic compounds in the diet (abstract). FASEB J. 2009;23:716.
Google Scholar
Mandalari G, Chessa S, Bisignano C, Chan L, Carughi A. The effect of sun-dried raisins (Vitis vinifera L.)on the in vitro composition of the gut microbiota 2016;7:4048–4060.
US Department of Agriculture. Total United States domestic raisin consumption from 2010/2011 to 2017/18 (in metric tons). Statista; 2018 [updated 2018; cited 2018 March 4]. Available from https://www.statista.com/statistics/205028/us-domestic-raisin-consumption/.
Viveros A, Chamorro S, Pizarro M, Arija I, Centeno C, Brenes A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult Sci. 2011;90:566–78.
Article
CAS
Google Scholar
Kafantaris I, Kotsampasi B, Christodoulou V, Kokka E, Kouka P, Terzopoulou Z, Gerasopoulos K, Stagos D, Mitsagga C, Giavasis I, et al. Grape pomace improves antioxidant capacity and faecal microflora of lambs. J Anim Physiol Anim Nutr (Berl). 2016;101:e108–21.
Article
Google Scholar
Baldwin J, Collins B, Wolf PG, Martinez K, Shen W, Chuang CC, Zhong W, Cooney P, Cockrell C, et al. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice. J Nutr Biochem. 2016;27:123–35.
Article
CAS
Google Scholar
Fiesel A, Gessner DK. Most E, Eder K. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs. BMC Vet Res. 2014;10:e196.
Article
Google Scholar
Kountouri AM, Gioxari A, Karvela E, Kaliora AC, Karvelas M, Karathanos VT. Chemopreventive properties of raisins originating from Greece in colon cancer cells. Food Funct. 2013;4:366–72.
Article
CAS
Google Scholar
Di Lorenzo C, Sangiovanni E, Fumagalli M, Colombo E, Frigerio G, Colombo F, Peres de Sousa L, Altindişli A, Restani P, Dell’Agli M. Evaluation of the anti-inflammatory activity of raisins (Vitis vinifera L.) in human gastric epithelial cells: a comparative study. Int J Mol Sci. 2016;17:e1156.
Article
Google Scholar
Mai V, McCrary QM, Sinha R, Glei M. Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity : an observational study in African American and Caucasian American volunteers. Nutr J. 2009;8:49.
Article
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
Article
CAS
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
Google Scholar
McMurdie PJ. Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.
Article
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
Google Scholar
Pavlidis P, Noble WS. Matrix2png: a utility for visualizing matrix data. Bioinformatics. 2003;19:295–6.
Article
CAS
Google Scholar
Miquel S, Martin R, Rossi O, Bermudez-Humaran LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16:255–61.
Article
CAS
Google Scholar
Eppinga H, Sperna-Weiland CJ, Thio HB, van der Woude CJ, Nijsten TE, Peppelenbosch MP, et al. Similar depletion of protective Faecalibacterium prausnitzii in psoriasis and inflammatory bowel disease. but not in Hidradenitis Suppurativa J Crohns Colitis. 2016;10:1067–75.
Article
Google Scholar
Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr. 2009;101:541–50.
Article
CAS
Google Scholar
Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, Knight R. Experimental and analytical tools for studying the human microbiome. Nature Rev Genet. 2011;13:47–58.
Article
Google Scholar
Lin WH, Wang MC, Tseng CC, Ko WC, Wu AB, Zheng PX, Wu JJ. Clinical and microbiological characteristics of Klebsiella pneumoniae isolates causing community-acquired urinary tract infections. Infection. 2010;38:459–64.
Article
Google Scholar
Van den Munckhof ICL, Kurilshikov A, Ter Horst R, Riksen NP, Joosten LAB, Zhernakova A, Fu J, Keating ST, Netea MG, De Graaf J, Rutten JHW. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes Rev. 2018;19:1719–34.
Article
Google Scholar
Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease. Bmj. 2018; 360: ej5145.
Williamson G, Carughi A. Polyphenol content and health benefits of raisins. Nutr Res. 2010;30:511–9.
Article
CAS
Google Scholar
Yadav D, Kumar A, Kumar P, Mishra D. Antimicrobial properties of black grape (Vitis vinifera L.) peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds. Indian J of Phamacol. 2015;47:663–7.
Article
CAS
Google Scholar
Ley RE. Gut microbiota in 2015: Prevotella in the gut: choose carefully. Nat Rev Gastroenterol Hepatol. 2016;13:69–70.
Article
CAS
Google Scholar
Selma MV, Espin JC, Tomas-Barberan FA. Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem. 2009;57:6485–501.
Article
CAS
Google Scholar
Queipo-Ortuno MI, Boto-Ordonez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M, Estruch R, Cardona Diaz F, Andres-Lacueva C, Tinahones FJ. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr. 2012;95:1323–34.
Article
CAS
Google Scholar
Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202.
Article
Google Scholar
Brusca SB, Abramson SB, Scher JU. Microbiome and mucosal inflammation as extra-articular triggers for rheumatoid arthritis and autoimmunity. Curr Opin Rheumatol. 2014;26:101–7.
Article
CAS
Google Scholar
Mariat D, Firmesse O, Levenez F, Guimarăes VD, Sokol H, Dore J, Corthier G, Furet JP. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:e123.
Article
Google Scholar
Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:e26050.
Google Scholar
Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, Hayes RB, et al. Sex, body mass index, and dietary Fiber intake influence the human gut microbiome. PLoS One. 2015;10:e0124599.
Article
Google Scholar