Starkweather AR, Alhaeeri AA, Montpetit A, Brumelle J, Filler K, Montpetit M, Mohanraj L, Lyon DE, Jackson-Cook CK. An integrative review of factors associated with telomere length and implications for biobehavioral research. Nurs Res. 2014;63:36–50.
Article
PubMed
PubMed Central
Google Scholar
von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27:339–44.
Article
Google Scholar
Huzen J, Wong LSM, van Veldhuisen DJ, Samani NJ, Zwinderman AH, Codd V, Cawthon RM, Benus GFJD, van der Horst ICC, Navis G, Bakker SJL, Gansevoort RT, de Jong PE, Hillege HL, van Gilst WH, de Boer RA, van der Harst P. Telomere length loss due to smoking and metabolic traits. J Intern Med. 2014;275:155–63.
Article
CAS
PubMed
Google Scholar
Bailey SM, Brenneman MA, Goodwin EH. Frequent recombination in telomeric DNA may extend the proliferative life of telomerase-negative cells. Nucleic Acids Res. 2004;32:3743–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu M, Huo YR, Wang J, Wang C, Liu S, Liu S, Wang J, Ji Y. Telomere shortening in Alzheimer's disease patients. Ann Clin Lab Sci. 2016;46:260–5.
PubMed
Google Scholar
Zhu X, Han W, Xue W, Zou Y, Xie C, Du J, Jin G. The association between telomere length and cancer risk in population studies. Sci Rep. 2016;6:22243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boonekamp JJ, Simons MJP, Hemerik L, Verhulst S. Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell. 2013;12:330–2.
Article
CAS
PubMed
Google Scholar
Bischoff C, Petersen HC, Graakjaer J, Andersen-Ranberg K, Vaupel JW, Bohr VA, Kolvraa S, Christensen K. No association between telomere length and survival among the elderly and oldest old. Epidemiology (Cambridge, Mass). 2006;17:190–4.
Article
Google Scholar
Fornes NS, Martins IS, Hernan M, Velasquez-Melendez G, Ascherio A. Frequency of food consumption and lipoprotein serum levels in the population of an urban area. Brazil, Revista de saude publica. 2000;34:380–7.
Article
CAS
Google Scholar
Chun YJ, Sohn S-K, Song HK, Lee SM, Youn YH, Lee S, Park H. Associations of colorectal cancer incidence with nutrient and food group intakes in korean adults: a case–control study. Clin Nutr Res. 2015;4:110–23.
Article
PubMed
PubMed Central
Google Scholar
Bishop KS, Erdrich S, Karunasinghe N, Han DY, Zhu S, Jesuthasan A, Ferguson LR. An investigation into the association between DNA damage and dietary fatty acid in men with prostate cancer. Nutrients. 2015;7:405–22.
Article
PubMed
PubMed Central
Google Scholar
Guo J, Wei W, Zhan L. Red and processed meat intake and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat. 2015;151:191–8.
Article
CAS
PubMed
Google Scholar
Ferrucci LM, Sinha R, Graubard BI, Mayne ST, Ma X, Schatzkin A, Schoenfeld PS, Cash BD, Flood A, Cross AJ. Dietary meat intake in relation to colorectal adenoma in asymptomatic women. Am J Gastroenterol. 2009;104:1231–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wie G-A, Cho Y-A, Kang H-h, Ryu K-A, Yoo M-K, Kim Y-A, Jung K-W, Kim J, Lee J-H, Joung H. Red meat consumption is associated with an increased overall cancer risk: a prospective cohort study in Korea. Br J Nutr. 2014;112:238–47.
Article
CAS
PubMed
Google Scholar
Sun L, Tan R, Xu J, LaFace J, Gao Y, Xiao Y, Attar M, Neumann C, Li G-M, Su B, Liu Y, Nakajima S, Levine AS, Lan L. Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death. Nucleic Acids Res. 2015;43:6334–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bastide NM, Chenni F, Audebert M, Santarelli RL, Taché S, Naud N, Baradat M, Jouanin I, Surya R, Hobbs DA, Kuhnle GG, Raymond-Letron I, Gueraud F, Corpet DE, Pierre, Fabrice HF. A central role for heme iron in colon carcinogenesis associated with red meat intake. Cancer Res. 2015;75:870–9.
Article
CAS
PubMed
Google Scholar
Gutierrez-Mariscal FM, Perez-Martinez P, Delgado-Lista J, Yubero-Serrano EM, Camargo A, Delgado-Casado N, Cruz-Teno C, Santos-Gonzalez M, Rodriguez-Cantalejo F, Castaño JP, Villalba-Montoro JM, Fuentes F, Perez-Jimenez F, Lopez-Miranda J. Mediterranean diet supplemented with coenzyme Q10 induces postprandial changes in p53 in response to oxidative DNA damage in elderly subjects. Age (Dordr). 2012;34:389–403.
Article
CAS
Google Scholar
Meza-Miranda ER, Camargo A, Rangel-Zuñiga OA, Delgado-Lista J, Garcia-Rios A, Perez-Martinez P, Tasset-Cuevas I, Tunez I, Tinahones FJ, Perez-Jimenez F, Lopez-Miranda J. Postprandial oxidative stress is modulated by dietary fat in adipose tissue from elderly people. Age (Dordr). 2014;36:507–17.
Article
CAS
Google Scholar
Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30, e47.
Article
PubMed
PubMed Central
Google Scholar
Marcon F, Siniscalchi E, Crebelli R, Saieva C, Sera F, Fortini P, Simonelli V, Palli D. Diet-related telomere shortening and chromosome stability. Mutagenesis. 2012;27:49–57.
Article
CAS
PubMed
Google Scholar
Lee J-Y, Jun N-R, Yoon D, Shin C, Baik I. Association between dietary patterns in the remote past and telomere length. Eur J Clin Nutr. 2015.
O'Callaghan NJ, Toden S, Bird AR, Topping DL, Fenech M, Conlon MA. Colonocyte telomere shortening is greater with dietary red meat than white meat and is attenuated by resistant starch. Clinical nutrition (Edinburgh, Scotland). 2012;31:60–4.
Article
Google Scholar
Toden S, Bird AR, Topping DL, Conlon MA. High red meat diets induce greater numbers of colonic DNA double-strand breaks than white meat in rats: attenuation by high-amylose maize starch. Carcinogenesis. 2007;28:2355–62.
Article
CAS
PubMed
Google Scholar
Gilsing AMJ, Fransen F, de Kok, Theo M, Goldbohm AR, Schouten LJ, de Bruïne, Adriaan P, van Engeland M, van den Brandt, Piet A, de Goeij, Anton FPM, Weijenberg MP. Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and APC. Carcinogenesis. 2013;34:2757–66.
Article
CAS
PubMed
Google Scholar
Hogervorst JGF, de Bruijn-Geraets D, Schouten LJ, van Engeland M, Theo MCM, Goldbohm RA, van den Brandt, Piet A, Weijenberg MP. Dietary acrylamide intake and the risk of colorectal cancer with specific mutations in KRAS and APC. Carcinogenesis. 2014;35:1032–8.
Article
CAS
PubMed
Google Scholar
Gilsing AMJ, Berndt SI, Ruder EH, Graubard BI, Ferrucci LM, Burdett L, Weissfeld JL, Cross AJ, Sinha R. Meat-related mutagen exposure, xenobiotic metabolizing gene polymorphisms and the risk of advanced colorectal adenoma and cancer. Carcinogenesis. 2012;33:1332–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mourouti N, Kontogianni MD, Papavagelis C, Plytzanopoulou P, Vassilakou T, Psaltopoulou T, Malamos N, Linos A, Panagiotakos DB. Meat consumption and breast cancer: a case–control study in women. Meat Sci. 2015;100:195–201.
Article
PubMed
Google Scholar
Inoue-Choi M, Sinha R, Gierach GL, Ward MH. Red and processed meat, nitrite, and heme iron intakes and postmenopausal breast cancer risk in the NIH-AARP Diet and Health Study, International journal of cancer. Journal international du cancer. 2015.
Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR Jr, Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA)., Am J Clin Nutr. 2008;88:1405–1412.
Pizzimenti S, Menegatti E, Berardi D, Toaldo C, Pettazzoni P, Minelli R, Giglioni B, Cerbone A, Dianzani MU, Ferretti C, Barrera G. 4-hydroxynonenal, a lipid peroxidation product of dietary polyunsaturated fatty acids, has anticarcinogenic properties in colon carcinoma cell lines through the inhibition of telomerase activity. J Nutr Biochem. 2010;21:818–26.
Article
CAS
PubMed
Google Scholar
Shao L, Li Q-h, Tan Z. l-Carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts. Biochem Biophys Res Commun. 2004;324:931–6.
Article
CAS
PubMed
Google Scholar
Burkert NT, Muckenhuber J, Großschädl F, Rásky E, Freidl W. Nutrition and health - the association between eating behavior and various health parameters: a matched sample study. PLoS One. 2014;9, e88278.
Article
PubMed
PubMed Central
Google Scholar
Diaz-Rua R, Keijer J, Caimari A, van Schothorst, Evert M, Palou A, Oliver P. Peripheral blood mononuclear cells as a source to detect markers of homeostatic alterations caused by the intake of diets with an unbalanced macronutrient composition. J Nutr Biochem. 2015;26:398–407.
Article
CAS
PubMed
Google Scholar
Lee K-Y, Uchida K, Shirota T, Kono S. Validity of a self-administered food frequency questionnaire against 7-day dietary records in four seasons. J Nutr Sci Vitaminol. 2002;48:467–76.
Article
CAS
PubMed
Google Scholar
Pusceddu I, Herrmann M, Kirsch SH, Werner C, Hubner U, Bodis M, Laufs U, Wagenpfeil S, Geisel J, Herrmann W. Prospective study of telomere length and LINE-1 methylation in peripheral blood cells: the role of B vitamins supplementation. Eur J Nutr. 2015.
Shin C, Baik I. Leukocyte telomere length is associated with serum vitamin B12 and homocysteine levels in older adults with the presence of systemic inflammation. Clin Nutr Res. 2016;5:7–14.
Article
PubMed
PubMed Central
Google Scholar
Williams DM, Palaniswamy S, Sebert S, Buxton JL, Blakemore AIF, Hypponen E, Jarvelin M-R. 25-Hydroxyvitamin D Concentration and Leukocyte Telomere Length in Young Adults: Findings From the Northern Finland Birth Cohort 1966. Am J Epidemiol. 1966;183(2016):191–8.
Google Scholar
Paul L, Jacques PF, Aviv A, Vasan RS, D'Agostino RB, Levy D, Selhub J. High plasma folate is negatively associated with leukocyte telomere length in Framingham Offspring cohort. Eur J Nutr. 2015;54:235–41.
Article
CAS
PubMed
Google Scholar
Paul L, Cattaneo M, D'Angelo A, Sampietro F, Fermo I, Razzari C, Fontana G, Eugene N, Jacques PF, Selhub J. Telomere length in peripheral blood mononuclear cells is associated with folate status in men. J Nutr. 2009;139:1273–8.
Article
CAS
PubMed
Google Scholar
Lin Y, Damjanovic A, Metter EJ, Nguyen H, Truong T, Najarro K, Morris C, Longo DL, Zhan M, Ferrucci L, Hodes RJ, Weng N-p. Age-associated telomere attrition of lymphocytes in vivo is co-ordinated with changes in telomerase activity, composition of lymphocyte subsets and health conditions. Clin Sci (Lond). 1979;128(2015):367–77.
Google Scholar
Steenstrup T, Hjelmborg JVB, Kark JD, Christensen K, Aviv A. The telomere lengthening conundrum--artifact or biology? Nucleic Acids Res. 2013.
Song Y, You N-CY, Song Y, Kang MK, Hou L, Wallace R, Eaton CB, Tinker LF, Liu S. Intake of small-to-medium-chain saturated fatty acids is associated with peripheral leukocyte telomere length in postmenopausal women. J Nutr. 2013;143:907–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W-G, Zhu S-Y, Zhao D-L, Jiang S-M, Li J, Li Z-X, Fu B, Zhang M, Li D-G, Bai X-J, Cai G-Y, Sun X-F, Chen X-M. The correlation between peripheral leukocyte telomere length and indicators of cardiovascular aging. Heart Lung Circ. 2014;23:883–90.
Article
PubMed
Google Scholar
Chilton WL, Marques FZ, West J, Kannourakis G, Berzins SP, O'Brien BJ, Charchar FJ. Acute exercise leads to regulation of telomere-associated genes and microRNA expression in immune cells. PLoS One. 2014;9, e92088.
Article
PubMed
PubMed Central
Google Scholar
Saßenroth D, Meyer A, Salewsky B, Kroh M, Norman K, Steinhagen-Thiessen E, Demuth I. Sports and exercise at different ages and leukocyte telomere length in later life - data from the Berlin Aging Study II (BASE-II). PLoS One. 2015;10, e0142131.
Article
PubMed
PubMed Central
Google Scholar
Rode L, Nordestgaard BG, Weischer M, Bojesen SE. Increased body mass index, elevated C-reactive protein, and short telomere length. J Clin Endocrinol Metab. 2014;99:E1671–5.
Article
CAS
PubMed
Google Scholar
Müezzinler A, Zaineddin AK, Brenner H. Body mass index and leukocyte telomere length in adults: a systematic review and meta-analysis. Obesity reviews an official journal of the International Association for the Study of Obesity. 2014;15:192–201.
Article
PubMed
Google Scholar
Adler N, Pantell MS, O'Donovan A, Blackburn E, Cawthon R, Koster A, Opresko P, Newman A, Harris TB, Epel E. Educational attainment and late life telomere length in the Health. Aging and Body Composition Study, Brain, behavior, and immunity. 2013;27:15–21.
Article
PubMed
Google Scholar
Pearce MS, Mann KD, Martin-Ruiz C, Parker L, White M, von Zglinicki T, Adams J. Childhood growth, IQ and education as predictors of white blood cell telomere length at age 49–51 years: the Newcastle Thousand Families Study. PLoS One. 2012;7, e40116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steptoe A, Hamer M, Butcher L, Lin J, Brydon L, Kivimäki M, Marmot M, Blackburn E, Erusalimsky JD. Educational attainment but not measures of current socioeconomic circumstances are associated with leukocyte telomere length in healthy older men and women. Brain Behav Immun. 2011;25:1292–8.
Article
PubMed
Google Scholar
Darmon N, Drewnowski A. Does social class predict diet quality? Am J Clin Nutr. 2008;87:1107–17.
CAS
PubMed
Google Scholar