Ip S, Chung M, Raman G, Chew P, Magula N, DeVine D, Trikalinos T, Lau J: Breastfeeding and maternal and infant health outcomes in developed countries. Evid RepTechnol Assess (Full Rep). 2007, 153: 1-186.
Google Scholar
Wiley AS: Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach. Am J Hum Biol. 2012, 24: 130-138. 10.1002/ajhb.22201.
PubMed
Google Scholar
Dodd KM, Tee AR: Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab. 2012, 302: E1329-E1342. 10.1152/ajpendo.00525.2011.
CAS
PubMed
Google Scholar
Bakan I, Laplante M: Connecting mTORC1 signalling to SREBP-1 activation. Curr Opin Lipidol. 2012, 23: 226-234. 10.1097/MOL.0b013e328352dd03.
CAS
PubMed
Google Scholar
Foster KG, Fingar DC: Mammalian target of rapamycin (mTOR): conducting the cellular signalling symphony. J Biol Chem. 2010, 285: 14071-14077. 10.1074/jbc.R109.094003.
CAS
PubMed
PubMed Central
Google Scholar
Wu G: Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009, 37: 1-17.
PubMed
Google Scholar
Markus CR: Dietary amino acids and brain serotonin function; implications for stress-related affective changes. Neuromol Med. 2008, 10: 247-258. 10.1007/s12017-008-8039-9.
CAS
Google Scholar
Lancranjan I, Wirz-Justice A, Pühringer W, del Pozo E: Effect of 1–5 hydroxytryptophan infusion on growth hormone and prolactin secretion in man. J Clin Endocrinol Metab. 1977, 45: 588-593. 10.1210/jcem-45-3-588.
CAS
PubMed
Google Scholar
Rich-Edwards JW, Ganmaa D, Pollak MN, Nakamoto EK, Kleinman K, Tserendolgor U, Willet WC, Frazier AL: Milk consumption and the prepubertal somatotropic axis. Nutr J. 2007, 6: 28-10.1186/1475-2891-6-28.
PubMed
PubMed Central
Google Scholar
Hoppe C, Mølgaard C, Dalum C, Vaag A, Michaelsen KF: Differential effects of casein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP-3: results from a randomized 7-day supplementation study in prepubertal boys. Eur J Clin Nutr. 2009, 63: 1076-1083. 10.1038/ejcn.2009.34.
CAS
PubMed
Google Scholar
Norat T, Dossus L, Rinaldi S, Overvad K, Grønbaek H, Tjønneland A, Olsen A, Clavel-Chapelon F, Boutron-Ruault MC, Boeing H, Lahmann PH, Linseisen J, Nagel G, Trichopoulou A, Trichopoulos D, Kalapothaki V, Sieri S, Palli D, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Peeters PH, van Gils CH, Agudo A, Amiano P, Ardanoz E, Martinez C, Quirós R, Tormo MJ, et al: Diet, serum insulin-like growth factor-I and IGF-binding protein-3 in European women. Eur J Clin Nutr. 2007, 61: 91-98. 10.1038/sj.ejcn.1602494.
CAS
PubMed
Google Scholar
Crowe FL, Key TJ, Allen NE, Appleby PN, Roddam A, Overvad K, Grønbaek H, Tjønneland A, Halkjaer J, Dossus L, Boeing H, Kröger J, Trichopoulou A, Dilis V, Trichopoulos D, Boutron-Ruault MC, De Lauzon B, Clavel-Chapelon F, Palli D, Berrino F, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Vrieling A, van Gils CH, Peeters PH, Gram IT, Skeie G, Lund E, et al: The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev. 2009, 18: 1333-1340. 10.1158/1055-9965.EPI-08-0781.
CAS
PubMed
Google Scholar
Qin LQ, He K, Xu JY: Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr. 2009, 60 (Suppl 7): 330-340.
CAS
PubMed
Google Scholar
Socha P, Grote V, Gruszfeld D, Janas R, Demmelmair H, Closa-Monasterolo R, Subías JE, Scaglioni S, Verduci E, Dain E, Langhendries JP, Perrin E, Koletzko B, European Childhood Obesity Trial Study Group: Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr. 2011, 94 (Suppl 6): 1776S-1784S.
CAS
PubMed
Google Scholar
Nilsson M, Stenberg M, Frid AH, Holst JJ, Björck IM: Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr. 2004, 80: 1246-1253.
CAS
PubMed
Google Scholar
Salehi A, Gunnerud U, Muhammed SJ, Ostman E, Holst JJ, Björck I, Rorsman P: The insulinogenic effects of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutr Metab (Lond). 2012, 9: 48-10.1186/1743-7075-9-48.
CAS
Google Scholar
Hoppe C, Mølgaard C, Vaag A, Barkholt V, Michaelsen KF: High intakes of milk, but not meat, increases s-insulin and insulin resistance in 8-year- old boys. Eur J Clin Nutr. 2005, 59: 393-398. 10.1038/sj.ejcn.1602086.
CAS
PubMed
Google Scholar
Chen Q, Reimer RA: Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition. 2009, 25: 340-349. 10.1016/j.nut.2008.08.012.
PubMed
Google Scholar
Sener A, Malaisse WJ: L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature. 1980, 288: 187-189. 10.1038/288187a0.
CAS
PubMed
Google Scholar
Malaisse WJ: Branched-chain amino and keto acid metabolism in pancreatic islets. Adv Enzyme Regul. 1986, 25: 203-217.
CAS
PubMed
Google Scholar
Fahien LA, MacDonald MJ, Kmiotek EH, Mertz RJ, Fahien CM: Regulation of insulin release by factors that also modify glutamate dehydrogenase. J Biol Chem. 1988, 263: 13610-13614.
CAS
PubMed
Google Scholar
Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel MK: Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic β-cells. Diabetes. 2001, 50: 353-360. 10.2337/diabetes.50.2.353.
CAS
PubMed
Google Scholar
McDaniel ML, Marshall CA, Pappan KL, Kwon G: Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic β-cells. Diabetes. 2002, 51: 2877-2885. 10.2337/diabetes.51.10.2877.
CAS
PubMed
Google Scholar
Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA: Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev. 2010, 68: 270-279. 10.1111/j.1753-4887.2010.00282.x.
PubMed
PubMed Central
Google Scholar
Le Bacquer O, Queniat G, Gmyr V, Kerr-Conte J, Lefebvre B, Pattou F: mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells. J Endocrinol. 2013, 216: 21-29. 10.1530/JOE-12-0351.
CAS
PubMed
Google Scholar
Li X, Wang X, Liu R, Ma Y, Guo H, Hao L, Yao P, Liu L, Sun X, He K, Cao W, Yang X: Chronic leucine supplementation increases body weight and insulin sensitivity in rats on high-fat diet likely by promoting insulin signalling in insulin-target tissues. Mol Nutr Food Res. 2013, 57: 1067-1079. 10.1002/mnfr.201200311.
CAS
PubMed
Google Scholar
Farnfield MM, Carey KA, Gran P, Trenerry MK, Cameron-Smith D: Whey protein ingestion activates mTOR-dependent signalling after resistance exercise in young men: a double-blinded randomized controlled trial. Nutrients. 2009, 1: 263-275. 10.3390/nu1020263.
CAS
PubMed
PubMed Central
Google Scholar
Ponter AA, Cortamira NO, Sève B, Salter DN, Morgan LM: The effects of energy source and tryptophan on the rate of protein synthesis and on hormones of the entero-insular axis in the piglet. Br J Nutr. 1994, 71: 661-674. 10.1079/BJN19940174.
CAS
PubMed
Google Scholar
Ponter AA, Sève B, Morgan LM: Intragastric tryptophan reduces glycemia after glucose, possibly via glucose-mediated insulinotropic polypeptide in early-weaned piglets. J Nutr. 1994, 124: 259-267.
CAS
PubMed
Google Scholar
Gunnarsson TP, Sörhed Winzell M, Deacon CF, Larson MO, Jelic K, Carr RD, Ahrén B: Glucose-induced incretin hormone release and inactivation are differently modulated by oral fat and protein in mice. Endocrinology. 2006, 147: 3173-3180. 10.1210/en.2005-1442.
CAS
PubMed
Google Scholar
Occhi G, Losa M, Albiger N, Trivellin G, Regazzo D, Scanarini M, Monteserin- Garcia JL, Fröhlich B, Ferasin S, Terreni MR, Fassina A, Vitiello L, Stalla G, Mantero F, Scaroni C: The glucose-dependent insulinotropic polypeptide receptor is overexpressed amongst GNAS1 mutation-negative somatotropinomas and drives growth hormone (GH)-promoter activity in GH3 cells. J Neuroendocrinol. 2011, 23: 641-649. 10.1111/j.1365-2826.2011.02155.x.
CAS
PubMed
Google Scholar
Harp JB, Goldstein S, Phillips LS: Nutrition and somatomedin. XXIII. Molecular regulation of IGF-1 by amino acid availability in cultured hepatocytes. Diabetes. 1991, 40: 95-101. 10.2337/diabetes.40.1.95.
CAS
PubMed
Google Scholar
Wheelhouse NM, Stubbs AK, Lomax MA, MacRae JC, Hazlerigg DG: Growth hormone and amino acid supply interact synergistically to control insulin-like growth factor-I production and gene expression in cultured ovine hepatocytes. J Endocrinol. 1999, 163: 353-361. 10.1677/joe.0.1630353.
CAS
PubMed
Google Scholar
Thissen JP, Pucilowska JB, Underwood LE: Differential regulation of insulin-like growth factor I (IGF-I) and IGF binding protein-1 messenger ribonucleic acids by amino acid availability and growth hormone in rat hepatocyte primary culture. Endocrinology. 1994, 134: 1570-1576. 10.1210/en.134.3.1570.
CAS
PubMed
Google Scholar
Thissen JP, Ketelslegers JM, Underwood LE: Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994, 15: 80-101.
CAS
PubMed
Google Scholar
Foster EB, Fisher G, Sartin JL, Elsasser TH, Wu G, Cowan W, Pascoe DD: Acute regulation of IGF-1 by alterations in post-exercise macronutrients. Amino Acids. 2012, 42: 1405-1416. 10.1007/s00726-011-0837-y.
CAS
PubMed
Google Scholar
Patel S, Lochhead PA, Rena G, Fumagalli S, Pende M, Kozma SC, Thomas G, Sutherland C: Insulin regulation of insulin-like growth factor-binding protein-1 gene expression is dependent on the mammalian target of rapamycin, but independent of ribosomal S6 kinase activity. J Biol Chem. 2002, 277: 9889-9895. 10.1074/jbc.M109870200.
CAS
PubMed
Google Scholar
Lee PDK, Conover CA, Powell DR: Regulation and function of insulin-like growth factor-binding protein-1. Proc Soc Exp Biol Med. 1993, 204: 4-29. 10.3181/00379727-204-43630.
CAS
PubMed
Google Scholar
Frost RA, Lang CH: Differential effects of insulin-like growth factor-1 (IGF- I) and IGF-binding protein-1 on protein metabolism in human skeletal muscle cells. Endocr Soc. 1999, 140: 3962-3970. 10.1210/en.140.9.3962.
CAS
Google Scholar
Smith WJ, Underwood LE, Clemmons DR: Effects of caloric or protein restriction on insulin-like growth factor-I (IGF-I) and IGF-binding proteins in children and adults. J Clin Endocrinol Metab. 1995, 80: 443-449. 10.1210/jc.80.2.443.
CAS
PubMed
Google Scholar
Rivero LGF, Martin MA, Arahuetes R, Hernandez ER, Pascual-Leone AM: Effects of refeeding of undernourished and insulin treatment of diabetic neonatal rats on IGF and IGFBP. Am J Physiol. 1996, 271: E223-E231.
PubMed
Google Scholar
Millward DJ, Layman DK, Tomé D, Schaafsma G: Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. Am J Clin Nutr. 2008, 87: 1576S-1581S.
CAS
PubMed
Google Scholar
Melnik BC, John SW, Schmitz G: Over-stimulation of insulin/IGF-1 signalling by Western diet may promote diseases of civilization: lessons learnt from Laron syndrome. Nutr Metab (Lond). 2011, 8: 41-10.1186/1743-7075-8-41.
CAS
Google Scholar
Liang H, Huang L, Cao J, Zen K, Chen X, Zhang CY: Regulation of mammalian gene expression by exogenous microRNAs. WIREs RNA. 2012, 3: 733-742. 10.1002/wrna.1127.
CAS
PubMed
Google Scholar
Chen X, Liang H, Zhang J, Zen K, Zhang CY: Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012, 22: 125-132. 10.1016/j.tcb.2011.12.001.
CAS
PubMed
Google Scholar
Ambros V: The functions of animal microRNAs. Nature. 2004, 431: 350-355. 10.1038/nature02871.
CAS
PubMed
Google Scholar
Chen X, Liang H, Zhang J, Zen K, Zhang CY: Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell. 2012, 3: 28-37. 10.1007/s13238-012-2003-z.
CAS
PubMed
PubMed Central
Google Scholar
Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K: The mircoRNA spectrum in 12 body fluids. Clin Chem. 2010, 56: 1733-1741. 10.1373/clinchem.2010.147405.
CAS
PubMed
PubMed Central
Google Scholar
Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N: Isolation of bovine milk-derived microvesicles carrying mRNA and microRNAs. Biochem Biophys Res Commun. 2010, 396: 528-533. 10.1016/j.bbrc.2010.04.135.
CAS
PubMed
Google Scholar
Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D, Hu X, Zhao S, Li L, Zhu L, Yan Q, Zhang J, Zen K, Zhang CY: Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res. 2010, 20: 1128-1137. 10.1038/cr.2010.80.
CAS
PubMed
Google Scholar
Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M: Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J Dairy Sci. 2012, 95: 4831-4841. 10.3168/jds.2012-5489.
CAS
PubMed
Google Scholar
Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE: Bovine milk exosome proteome. J Proteomics. 2012, 75: 1486-1492. 10.1016/j.jprot.2011.11.017.
CAS
PubMed
Google Scholar
Izumi H, Kosala N, Shimizu T, Sekine K, Ochiya T, Takase M: Purification of RNA from milk whey. Methods Mol Biol. 2013, 1024: 191-201. 10.1007/978-1-62703-453-1_15.
CAS
PubMed
Google Scholar
Sun Q, Chen X, Yu J, Ken K, Zhang CY, Li L: Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein Cell. 2013, 4: 197-210. 10.1007/s13238-013-2119-9.
CAS
PubMed
PubMed Central
Google Scholar
Kosaka N, Izumi H, Sekine K, Ochiya T: microRNA as a new immune- regulatory agent in breast milk. Silence. 2010, 1: 7-10.1186/1758-907X-1-7.
PubMed
PubMed Central
Google Scholar
Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, Zhou X, Wang X, Gao X, Li X: Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012, 8: 118-123.
CAS
PubMed
Google Scholar
Van Niel G, Raposo G, Candahl C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M: Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology. 2001, 121: 337-349. 10.1053/gast.2001.26263.
CAS
PubMed
Google Scholar
Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C: Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005, 17: 879-887. 10.1093/intimm/dxh267.
CAS
PubMed
Google Scholar
Ludwig AK, Giebel B: Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol. 2012, 44: 11-15. 10.1016/j.biocel.2011.10.005.
CAS
PubMed
Google Scholar
Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R: Exosomes as intercellular signalling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci. 2013, 14: 5338-5366. 10.3390/ijms14035338.
CAS
PubMed
PubMed Central
Google Scholar
Olivieri F, Spazzafumo L, Santini G, Lazzarini R, Albertini MC, Rippo MR, Galeazzi R, Abbatecola AM, Marchesellli F, Monti D, Ostan R, Cevenini E, Antonicelli R, Franceschi C, Procopio AD: Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev. 2012, 133: 675-685. 10.1016/j.mad.2012.09.004.
CAS
PubMed
Google Scholar
Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang CY: Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22: 107-126. 10.1038/cr.2011.158.
CAS
PubMed
Google Scholar
Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007, 133: 647-658. 10.1053/j.gastro.2007.05.022.
CAS
PubMed
PubMed Central
Google Scholar
Han M, Liu M, Wang Y, Chen X, Xu J, Sun Y, Zhao L, Qu H, Fan Y, Wu C: Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 incactivation by targeting PTEN. PLoS One. 2012, 7: e39520-10.1371/journal.pone.0039520.
CAS
PubMed
PubMed Central
Google Scholar
Dey N, Das F, Mariappan MM, Mandal CC, Ghosh-Choudhury N, Kasinath BS, Choudhury GG: MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem. 2011, 286: 25586-25603. 10.1074/jbc.M110.208066.
CAS
PubMed
PubMed Central
Google Scholar
Dey N, Ghosh-Choudhury N, Kasinath BS, Choudhury GG: TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS One. 2012, 7: e42316-10.1371/journal.pone.0042316.
CAS
PubMed
PubMed Central
Google Scholar
Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D, Abdellatif M: MicroRNA-21 targets Sprouty2 and promotes cellular outgrouths. Mol Biol Cell. 2008, 19: 3272-3282. 10.1091/mbc.E08-02-0159.
CAS
PubMed
PubMed Central
Google Scholar
Dariminpourain M, Wang S, Ittmann M, Kwabi-Addo B: Transcriptional and post-transcriptional regulation of Sprouty1, a receptor tyrosine kinase inhibitor in prostate cancer. Prostate Cancer Prostatic Dis. 2011, 14: 279-285. 10.1038/pcan.2011.33.
Google Scholar
Frey MR, Carraro G, Batra RK, Polk DB, Warburton D: Sprouty keeps bowel kinases regular in colon cancer, while miR-21 targets Sprouty. Cancer Biol Ther. 2011, 11: 122-124. 10.4161/cbt.11.1.14176.
CAS
PubMed
Google Scholar
Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008, 27: 2128-2136. 10.1038/sj.onc.1210856.
CAS
PubMed
Google Scholar
Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene. 2008, 27: 4373-4379. 10.1038/onc.2008.72.
CAS
PubMed
Google Scholar
Carayol N, Katsoulidis E, Sassano A, Altman JK, Druker BJ, Platanias LC: Suppression of programmed cell death 4 (PDCD4) protein expression by BCR-ABL-regulated engagement of the mTOR/p70 S6 kinase pathway. J Biol Chem. 2008, 283: 8601-8610. 10.1074/jbc.M707934200.
CAS
PubMed
PubMed Central
Google Scholar
Ng R, Song G, Roll GR, Frandsen NM, Willenbring H: A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest. 2012, 122: 1097-1108. 10.1172/JCI46039.
CAS
PubMed
PubMed Central
Google Scholar
Dennis MD, Jefferson LS, Kimball SR: Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis. J Biol Chem. 2012, 287: 42890-42899. 10.1074/jbc.M112.404822.
CAS
PubMed
PubMed Central
Google Scholar
Becker Buscaglia LE, Li Y: Apoptosis and the target genes of miR-21. Chin J Cancer. 2011, 30: 371-380.
Google Scholar
Dey N, Das F, Ghosh-Choudhury N, Mandal CC, Parekh DJ, Block K, Kasinath BS, Abboud HA, Chouldhury GG: MicroRNA-21 governs TORC1 activation in renal cancer cell proliferation and invasion. PLoS One. 2012, 7: e37366-10.1371/journal.pone.0037366.
CAS
PubMed
PubMed Central
Google Scholar
Zoncu R, Efeyan A, Sabatini DM: mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011, 12: 21-35. 10.1038/nrm3025.
CAS
PubMed
Google Scholar
Proud CG: mTOR signalling in health and disease. Biochem Soc Trans. 2011, 39: 431-436. 10.1042/BST0390431.
CAS
PubMed
Google Scholar
Melnik BC: Dietary intervention in acne. Attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012, 4: 20-32. 10.4161/derm.19828.
CAS
PubMed
PubMed Central
Google Scholar
Melnik BC, Zouboulis CC: Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. Exp Dermatol. 2013, 22: 311-315. 10.1111/exd.12142.
CAS
PubMed
PubMed Central
Google Scholar
Melnik BC: Excessive leucine-mTORC1-signalling of cow milk-based infant formula: the missing link to understand early childhood obesity. J Obes. 2012, 2012: 197653-
PubMed
PubMed Central
Google Scholar
Arnberg K, Mølgaard C, Michaelsen KF, Jensen SM, Trolle E, Larnkjær A: Skim milk, whey, and casein increase body weight and whey and casein increase plasma C-peptide concentration in overweight adolescents. J Nutr. 2012, 142: 2083-2090. 10.3945/jn.112.161208.
CAS
PubMed
Google Scholar
Melnik BC: Leucine signalling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes. 2012, 3: 38-53. 10.4239/wjd.v3.i3.38.
PubMed
PubMed Central
Google Scholar
Harlan SM, Guo DF, Morgan DA, Fernandes-Santos C, Rahmouni K: Hypothalamic mTORC1 signalling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metabol. 2013, 17: 599-606. 10.1016/j.cmet.2013.02.017.
CAS
Google Scholar
Oddo S: The role of mTOR signaling in Alzheimer disease. Front Biosci. 2012, 4: 941-952.
Google Scholar
Pópulo H, Lopes JM, Soares P: The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012, 13: 1886-1918. 10.3390/ijms13021886.
PubMed
PubMed Central
Google Scholar
Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ, Wang S, Ren P, Martin M, Jessen K, Feldman ME, Weissman JS, Shokat KM, Rommel C, Ruggero D: The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. 2012, 485: 55-61. 10.1038/nature10912.
CAS
PubMed
PubMed Central
Google Scholar
Melnik BC, John SM, Carrera-Bastos P, Cordain L: The impact of cow´s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr Metab (Lond). 2012, 9: 74-10.1186/1743-7075-9-74.
CAS
Google Scholar
Ozkan H, Tuzun F, Kumral A, Duman N: Milk kinship hypothesis in light of epigenetic knowledge. Clin Epigenetics. 2012, 4 (1): 14-10.1186/1868-7083-4-14.
PubMed
PubMed Central
Google Scholar
Gould SJ, Booth AM, Hildreth JEK: The Trojan exosome hypothesis. Proc Natl Acad Sci USA. 2003, 100: 10592-10597. 10.1073/pnas.1831413100.
CAS
PubMed
PubMed Central
Google Scholar
Wiley AS: Dairy and milk consumption and child growth: Is BMI involved? An analysis of NHANES 1999–2004. Am J Hum Biol. 2010, 22: 517-525. 10.1002/ajhb.21042.
PubMed
Google Scholar
Berkey CS, Rocket HRH, Willet WC, Colditz GA: Milk, dairy fat, dietary calcium, and weight gain. Arch Pediatr Adolesc Med. 2005, 159: 543-550. 10.1001/archpedi.159.6.543.
PubMed
Google Scholar
Barr SI, McCarron DA, Heaney RP, Dawson-Hughes B, Berga SL, Stern JS, Oparil S: Effects of increased consumption of fluid milk on energy and nutrient intake, body weight, and cardiovascular risk factors in healthy older adults. Am J Diet Assoc. 2000, 100: 810-817. 10.1016/S0002-8223(00)00236-4.
CAS
Google Scholar
Olsen SF, Halldorsson TI, Willett WC, Knudsen VK, Gillman MW, Mikkelsen TB, Olsen J, NUTRIX Consortium: Milk consumption during pregnancy is associated with increased infant size at birth: prospective cohort study. Am J Clin Nutr. 2007, 86: 1104-1110.
CAS
PubMed
Google Scholar
Brantsaeter AL, Olafsdottir AS, Forsum E, Olsen SF, Thorsdottir I: Does milk and dairy consumption during pregnancy influence fetal growth and infant birthweight? A systematic literature review. Food Nutr Res. 2012, 56: 20050-
Google Scholar
Holt S, Brand Miller J, Petocz P: An insulin index of foods: the insulin demand generated by 1000-kJ portions of common foods. Am J Clin Nutr. 1997, 66: 1264-1276.
CAS
PubMed
Google Scholar
Hoyt G, Hickey MS, Cordain L: Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk. Br J Nutr. 2005, 93: 175-177. 10.1079/BJN20041304.
CAS
PubMed
Google Scholar
Morris C, O´Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, Brennan L: The relationship between BMI and metabolomic profiles: a focus on amino acids. Proc Nutr Soc. 2012, 71: 634-638. 10.1017/S0029665112000699.
CAS
PubMed
Google Scholar
McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, Clish CB, Mootha VK, Grinspoon SK, Fleischman A: Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatric Obesity. 2013, 8: 52-61. 10.1111/j.2047-6310.2012.00087.x.
CAS
PubMed
Google Scholar
Romao JM, Jin W, Dodson MV, Hausman GJ, Moore SS, Guan LL: MicroRNA regulation in mammalian adipogenesis. Exp Biol Med. 2011, 236: 997-1004. 10.1258/ebm.2011.011101.
CAS
Google Scholar
Kim YJ, Hwang SJ, Bae YC, Jung JS: Mir-21 regulates adipogenic differentiation through the modulation of TGF-β signalling in mesenchymal stem cells derived from human adipose tissue. Stem Cells. 2009, 27: 3093-3102.
CAS
PubMed
Google Scholar
Kim YJ, Hwang SH, Cho HH, Shun KK, Bae YC, Jung JS: MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. J Cell Physiol. 2011, 227: 183-193.
Google Scholar
Yoon MS, Zhang C, Sun Y, Schoenherr CJ, Chen J: Mechanistic target of rapamycin (mTOR) controls homeostasis of adipogenesis. J Lipid Res. 2013, 54: 2166-2173. 10.1194/jlr.M037705.
CAS
PubMed
PubMed Central
Google Scholar
Carnevalli LS, Masuda K, Frigerio F, Le Bacquer O, Um SH, Gandin V, Topisirovic I, Sonenberg N, Thomas G, Kozma SC: S6K1 plays a critical role in early adipocyte differentiation. Dev Cell. 2010, 18: 763-774. 10.1016/j.devcel.2010.02.018.
CAS
PubMed
PubMed Central
Google Scholar
Xie H, Lim B, Lodish H: MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes. 2009, 58: 1050-1057. 10.2337/db08-1299.
CAS
PubMed
PubMed Central
Google Scholar
Zhao C, Dong J, Jiang T, Shi Z, Yu B, Zhu Y, Chen D, Xu J, Huo R, Dai J, Xia Y, Pan S, Hu Z, Sha J: Early second-trimenster serum miRNA profiling predicts gestational diabetes mellitus. PLoS One. 2011, 6: e23925-10.1371/journal.pone.0023925.
CAS
PubMed
PubMed Central
Google Scholar
Dong XY, Tang SQ: Insulin-induced gene: a new regulator in lipid metabolism. Peptides. 2010, 31: 2145-2150. 10.1016/j.peptides.2010.07.020.
CAS
PubMed
Google Scholar
Li J, Takaishi K, Cook W, McCorkle SK, Unger RU: Insig-1 “brakes” lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Proc Natl Acad Sci USA. 2003, 100: 9476-9481. 10.1073/pnas.1133426100.
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Siegel F, Kipschull S, Haas B, Fröhlich H, Meister G, Pfeifer A: miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun. 2013, 4: 1769-
PubMed
PubMed Central
Google Scholar
Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, Smith WH, Karpe F, Humphreys S, Bedinger DH, Dunn TN, Thomas AP, Oort PJ, Kieffer DA, Amin R, Bettaieb A, Haj FG, Permana P, Anthony TG, Adams SH: Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab. 2013, 304: E1175-E1187. 10.1152/ajpendo.00630.2012.
CAS
PubMed
PubMed Central
Google Scholar
Mersey BD, Jin P, Danner DJ: Human microRNA (miR29b) expression controls the amount of branched chain α-ketoacid dehydrogenase complex in a cell. Hum Mol Genet. 2005, 14: 3371-3377. 10.1093/hmg/ddi368.
CAS
PubMed
Google Scholar
Um SH, D´Alession D, Thomas G: Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 2006, 3: 393-402. 10.1016/j.cmet.2006.05.003.
CAS
PubMed
Google Scholar
Lu J, Xie G, Jia W, Jia W: Insulin resistance and the metabolism of branched-chain amino acids. Front Med. 2013, 7: 53-59. 10.1007/s11684-013-0255-5.
PubMed
Google Scholar
Porstmann T, Santos CR, Lewis C, Griffiths B, Schulze A: A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochme Soc Trans. 2009, 37: 278-283. 10.1042/BST0370278.
CAS
Google Scholar
Laplante M, Sabatini DM: An emerging role of mTOR in lipid biosynthesis. Curr Biol. 2009, 19: R1046-R1052. 10.1016/j.cub.2009.09.058.
CAS
PubMed
PubMed Central
Google Scholar
Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN, Sabatini DM: mTOR complex 1 regulates Lipin1 localization to control the SREBP pathway. Cell. 2011, 146: 408-420. 10.1016/j.cell.2011.06.034.
CAS
PubMed
PubMed Central
Google Scholar
Kim JE, Chen J: Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes. 2004, 53: 2748-2756. 10.2337/diabetes.53.11.2748.
CAS
PubMed
Google Scholar
Blanchard FG, Festuccia WT, Houde VP, St-Pierre P, Brule S, Turcotte V, Cote M, Bellamnn K, Marette A, Deshaies Y: Major involvement of mTOR in the PPARγ-induced stimulation of adipose tissue lipid uptake and fat accretion. J Lipid Res. 2012, 53: 1117-1125. 10.1194/jlr.M021485.
CAS
PubMed
PubMed Central
Google Scholar
Chakrabarti P, English T, Shi J, Smas CM, Kandror KV: Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes. 2010, 59: 775-781. 10.2337/db09-1602.
CAS
PubMed
PubMed Central
Google Scholar
Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, Urbach A, Thornton JE, Triboulet R, Gregory RI, Altshuler D, Daley GQ, DIAGRAM Consortium, MAGIC Investigators: The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011, 147: 81-94. 10.1016/j.cell.2011.08.033.
CAS
PubMed
PubMed Central
Google Scholar
Viswanathan SR, Dalex GQ, Gregory RI: Selective blockade of microRNA processing by Lin-28. Science. 2008, 320: 97-100. 10.1126/science.1154040.
CAS
PubMed
PubMed Central
Google Scholar
Pérez LM, Bernal A, San Martin N, Lorenzo M, Fernández-Veledo S, Gávez BG: Metabolic rescue of obese adipose-derived stem cells by Lin28/Let7 pathway. Diabetes. 2013, 62: 2368-2379. 10.2337/db12-1220.
PubMed
PubMed Central
Google Scholar
Hulsmans M, Holvoet P: MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic diesease. Cardiovasc Res. 2013, June 16 [Epub ahead of print]
Google Scholar