For readers curious about the CCE experience, I offer a few cursory insights and observations from my own experience. It is important to emphasize here that I am not suggesting that all nutrition professionals develop a practice of CCE. My argument is that the collective discipline itself would benefit from even a a small cadre of CCE practitioners within its ranks who would then be positioned to share their emerging insights in discourse with the greater collective.
Although CCE may strike readers initially as perhaps overstepping the boundaries of credible scientific practice, it does not ask that I abandon my scientific commitments or compromise my scientific integrity. I need not uncritically accept other cultural knowledges or adopt a cultural heritage other than my own. Quite the contrary, through critical reflection and contemplation of hidden subjectivities I become more consciously aware of the cultural dimensions of scientific practice, better grounded culturally and more informed philosophically. I am able to bring critical thinking, critical self-reflection [26, 27] and intellectual humility [37] to better understand and embrace subjective cultural dimensions of knowledge that may not have been previously apparent [28]. CCE feels somewhat different than more instrumental forms of disciplinary inquiry because it allows for a transformative dimension. Transformational learning involves not only changes in what we know (informational learning), but also changes in how we know [39]. I am more able to open my full self to experiencing subjective realms of cultural difference without becoming defensive or retreating to a place where I am left only to assert positional power or the intellectual authority inherent in my credentials or position [28, 37].
I also find that personal relationships with non-academic mentors characterized by mutual trust and respect are essential in learning how to respectfully engage and navigate cultural difference without compromising human dignity or scientific integrity [28–30, 37]. I become more self-aware of the impulse to frame any problem or understand any issue through the lens of my academic training, and become more sensitive over time to how reflexively imposing this lens can distort knowledge that is generated from different cultural orientations [14, 16, 28–30, 36]. I become better prepared to recognize the power differentials and cultural assimilation that are built into institutional structures of higher education, yet often invisible to those within. Issues of injustice become more visible as I learn to navigate the sometimes conflicting and unsettling terrain of cultural difference [28–30, 36, 37]. Such issues are prominent within the narratives of many cultural communities [14, 16, 17, 36, 37] but are rare within disciplinary discourse [30]. The ability to see problems from different cultural vantage points while respecting the value of these perspectives is a practice that can seem messy and complicated, but also one that I believe holds significant potential for innovation [30, 37]. As a developmental craft, the practice of CCE includes skills increasingly demanded by a rapidly changing and diverse society that now awaits our students [18, 28, 36].
The healthful dissonance of a cultural lens
From the very brief historical sketch above, it should be obvious that today’s nutrition science is of Eurocentric origin. It is also permeated with Eurocentric cultural values that are often implicit. Such cultural values include human control over nature, human ascendency over other life forms, separation of the neutral observer from the object of inquiry, separation of "objective" knowledge from "subjective" experience, among many others [10]. Within the context of a specialized discipline like nutrition, such ideas are easily presumed as "givens" because, as Kuhn observed, these shared understandings greatly facilitate scientific advancement [4]. For example, the search for "mechanisms of action" reflects the idea of a mechanistic universe inherited from physics and chemistry as applied to physiology and then nutrition. It subjectively projects machine-like qualities onto life forms. Mechanistic thought becomes hidden through wide acceptance; as it becomes integral to the mental models and habits of mind through which disciplinary inquiry proceeds it escapes criticism. There is no question that mechanistic thought has proved useful for advancing nutrition science as for much of biomedicine. But is it possible that over-attachment to a "living being as machine" explanatory mindset might also become a liability if it constrains our ability to recognize other relationships? I propose that employing a cultural lens will offer nutrition science an accessible means to illuminate and contemplate hidden subjectivities that are otherwise implicit within our disciplinary habits of mind. A cultural lens would serve to extend our domain of thought by offering a different mental filter than that of the current disciplinary perspective. A cultural lens could be selected and used as needed to make more visible and apparent the dimensions of scientific practice that are otherwise implicit or opaque.
Webster defines culture as "the totality of socially transmitted behavior patterns, arts, beliefs, institutions, and all other products of human work and thought typical of a population or community at a given time" [40]. This definition certainly includes the activity of producing human knowledge, including scientific knowledge. A cultural lens would help us to see scientific disciplines as not just sub-cultures in themselves, but more importantly as products of and expressions of the larger societal culture from which they emerge. Many scientific disciplines, including nutrition, tend not to see their discipline or scientific practice as an expression of European culture. Most practicing scientists seldom consider the cultural grounding of their professional training or the cultural nature of their habits of mind. Scientists rarely see their work of advancing academic knowledge as a Eurocentric cultural construction. I am sympathetic that this proposal may seem as a rather radical proposition, evoking an uncomfortable sense of dissonance. Although such dissonance can feel destabilizing, I suggest this discomfort is ultimately healthful and productive because it offers nutrition science a means to expose otherwise hidden subjectivities for peer consideration and skeptical discourse. Let us explore this dissonance a bit more deeply.
Scientific investigation is often construed as a process of standing outside of culture, of removing oneself from subjective distraction as a means of decontextualized knowing [5]. Proper scientific inquiry involves creating an ideal environment for controlled observation that is separate from undue subjective influence wherein the scientific investigator can assume a role of neutral spectator [5]. Social and cultural circumstances and interests outside the carefully constructed domain of observation and controlled experiment are often thought of as threats to objective observation and deemed irrelevant [5, 6, 12]. To the extent possible, gathering data and testing hypotheses in these ways are considered as either transcending culture or avoiding culture altogether. The 20th century work on solving deficiency diseases offers an excellent example of how nutrition science can produce knowledge in accordance with laws considered universal - knowledge holding truth that transcends any consideration of culture. Precisely because mental models are successful, over time they become unconsciously taken for granted [3–6]. When assumptions-taken-as-truth become reified through success, there seems no need to examine what is self-evidently true. Background assumptions remain unexamined, exerting a powerful, often subconscious hold on one’s "thought style" [19]. They become integral to what Fleck describes as a structurally complete meaning system that becomes closed, circular and resistant [19]. These closed and circular dynamics cultivate invisibility that renders hidden subjectivities unavailable for criticism and skeptical discourse [3, 5, 6]. From within a closed system that works to avoid subjective contamination, the proposal of a cultural lens might seem absurd.
A cultural lens works to disturb the closed and circular meaning system by calling attention through critical reflection [26, 27] to what is often presumed as true and universal. It exposes hidden subjectivities as cultural constructions. The pervasive subject-object dichotomy between mind and matter, between scientist and nature, between experience and reality are ideas of Eurocentric origin that saturate scientific habits of mind and mental models. When assumptions-taken-as-truth are disrupted by skeptical inquiry and illuminated as mental constructions, a sense of destabilization occurs that manifests as a dissonance, or tension of epistemology [28, 30]. This destabilization can produce a profound sense of discomfort. We can choose to push away the discomfort by dismissing all of this talk as a messy and unnecessary distraction from the ongoing work of nutrition science. Or we can choose to hold the discomfort for further contemplation with the hope that something productive and useful might emerge. The latter choice can provoke us to consider the work of illuminating and questioning hidden subjectivities.
Take the ideal of objectivity. That we can point to many instances where science works should not be construed as evidence that our practice of science has met its ideal of pure objectivity, escaping any cultural influence. The ideal of skeptical inquiry would ask us to examine any such assumptions more closely. A cultural lens illuminates the ideal of the scientist as a disengaged observer as a product of European thought and culture. To what extent are we truly able to disengage from the world in striving to achieve ideals of pure objectivity and value neutrality? When, if ever, are we really meeting these ideals? To what extent and under what circumstances do we claim these ideals for our own convenience? These ideals are certainly valuable and useful, but if we truly value them we must be willing to admit that in practicing science we cannot deny our own subjective humanity. Every scientist started life as a human being long before becoming a scientist. Integrity requires us to admit when subjectivity is not filtered out by scientific methods. A cultural lens can help us begin to see how examining subjective dimensions through critically reflective inquiry may help to push nutrition science forward.
Still, this kind of work can be considered a messy and superfluous distraction to the more central task of advancing nutrition science. It can interfere with "progress" as often understood within our discipline. I agree that this work is a distraction from the ongoing, more routine disciplinary work that Kuhn refers to as "normal science" [4]. In fairness, a cultural lens would also bring some added tension, paradox and anomaly with the sometimes uncomfortable exploration of hidden subjectivities. But as the world changes, a closed system will eventually become confining and constraining, acting to limit thought and possibility [4, 23, 28]. In a rapidly changing world, I argue that good scientific practice would have us surface and critically reflect upon hidden subjectivities so that potential difficulties become explicit, available to peer-review and the process of self-correction. The ideal of skeptical inquiry can be considered incomplete without a critically reflective dimension of thought that can do the work of illuminating and questioning hidden subjectivities.
Nutrition science is now often presented as a true description of the material and objective reality of food and living organisms [41]. This simple descriptive stance leads to the epistemological problem of underdetermination – gaps between hypotheses and data - when background hypotheses are not articulated but presupposed as universal givens [6]. Underdetermination that remains invisible and therefore goes unexamined blinds us to significant underlying problems of epistemology. A cultural lens can allow us greater appreciation for a reality of food and living organisms that is revealed in response to our particular mental models and methods of questioning. This is where a selecting a cultural lens can offer us the added mental wavelength to make visible what is opaque in a more customary bandwidth of disciplinary thought. My argument is that we have reached a point in time where the cost/benefit equation weighs in favor of returning our attention to hidden subjectivities for the benefit of our discipline in the 21st century.
I contend that adopting a cultural lens would not threaten any legitimate intellectual substance or scientific integrity, while much capacity for self-correction and possibility for innovation could be gained. A cultural lens would not negate or compromise any scientific progress or assets that a biomedical thought style and cultural orientation brings to scientific practice. Many of our hidden subjectivities are integral to success in science and to how scientific knowledge is constructed. But I suggest that protecting hidden subjectivities from the collective and rigorous inquiry that a cultural lens would bring is no longer tenable in the 21st century. My hope is that proposing a cultural lens will encourage further conversation and discussion around these ideas. Perhaps at least a few scientists within the field might be predisposed to create a branch of critically reflective discourse devoted to acknowledging and examining our hidden subjectivities. This kind of discourse is now lacking in nutrition science, but adopting a cultural lens would allow it to emerge and inform the collective mindset and thought patterns of the greater discipline [28, 30].
Consequences of type II error?
As indicated earlier, the formidable authority of science to define nature and to determine what constitutes reliable knowledge of the world can condition and reify a belief among professional scientists that legitimate knowledge can only arise through methods accepted as valid within scientific societies. This idea certainly cannot be considered scientific; it did not result from experimental testing nor does it represent a hypothesis subjected to systematic and rigorous methodological inquiry. A cultural lens helps us to clarify this belief as an idea about science, an idea that becomes easily conflated with science within a structurally complete and circular meaning system [19]. This belief is certainly not without merit. It serves in defense against type I error (accepting as true what is actually false) and it is also commonly invoked as a defense against fraudulent health claims. But to what extent have we carefully considered the opportunity costs and hidden consequences that arise when "non-scientific" forms of knowledge arising from non-Eurocentric cultures are summarily dismissed or subjugated, in essence leaving the door wide open for type II error (rejecting as false what may actually be true)?
Every society in human history has had to develop its own forms of nutrition knowledge. Just as nutrition science and biomedicine are expressions of European culture, so indigenous knowledges [14, 17, 32, 36], Ayurveda [33] and Chinese Medicine [16, 34] are expressions of their cultures of origin. Attempting to understand the knowledge systems of non-European cultures exclusively through the lens of biomedical mental models is now routine practice but one that overlooks the importance and power of hidden subjectivities and cultural difference. Imposing biomedical models as a presumed universal standard for legitimation yields understandings of non-biomedical knowledge systems that are partial, distorted and fragmentary [14, 16, 17, 28–30, 36]. Presumptions of universality are yet another example of hidden subjectivity that escapes critical examination and the self-corrective power of biomedical peer-review. Such presumptions should be openly called into question and unpacked. That we can cite many instances where biomedicine works should not dissuade us from acknowledging the existence of powerful hidden subjectivities infiltrating biomedical thought styles. Because hidden subjectivities permeate human thought, we might expect that other cultures would offer their own array of background assumptions that could merit consideration on their own terms.
I was trained as a "wet bench" laboratory nutrition scientist and have subsequently worked for over twenty years as an Extension Specialist in cross-cultural contexts. My experience suggests non-biomedical knowledge systems can offer nutrition science a valuable means for critical reflection and further consideration if approached with greater appreciation for the subjective dimensions of human thought [2, 29, 36, 37]. This possibility is foreclosed if we reflexively impose our biomedical models as the only possible means through which to gain a legitimate understanding. By regarding biomedical models as cultural constructions, not universal givens, we hold a key to a doorway of broader understanding and wider possibility. Through the doorway sits a vast intercultural field with a varied topography of human thought and cognitive terrain. Each system of knowledge is grounded within its own cultural context, its own terrain of background assumptions with its own unique standpoints. These are vantage points offering different perspectives, which when inhabited empathically allow one to see and explore food and health relationships through a different cognitive orientation [14, 16, 28, 33, 34]. A very brief armchair journey may be helpful.
It is often forgotten that, prior to being colonized by Europeans, Indigenous peoples of the Americas existed in excellent health [42]. Indigenous cultures developed sophisticated systems of agriculture that have given us beans, corn, potatoes, pumpkins, squash, tomatoes, peppers and over twenty other foods [32]. They knew how to cure scurvy centuries before Europeans [42, 43]. The first Pharmacopeia of the United States published in 1820 lists more than 200 medicines coming from indigenous peoples [42, 43]. Moerman reports that of the 31,566 kinds of vascular plants found in North America, American Indians used 2874 of these species as medicines, 1886 as foods, 492 as fibers for weaving, baskets, building materials etc. and 230 as dyes [43]. All told, they found a useful purpose for 3923 kinds of plants. These achievements are seldom acknowledged in nutrition science. Why?
Of course, the short answer is that the knowledge of indigenous peoples is usually considered "unscientific". We can certainly agree that indigenous knowledge is "un-Eurocentric". But is it science? Gregory Cajete answers with an emphatic "Yes" in his book "Native Science" [17]. A cultural lens would help us to understand that indigenous sciences share with biomedicine a great appreciation for keen and rigorous empiricism [14, 17, 36]. Most indigenous sciences do not share the extreme subject/object separation that is inherent within biomedical thought of Eurocentric origin [14, 17, 36]. Rather than attempt to detach oneself as an observer isolated from the natural world in order to gain more "objective" knowledge, many indigenous peoples maintain an intimate participatory relationship with an interwoven and inter-related natural world, of which food and health relationships are a prime example [14, 17, 36]. As we confront the idea of indigenous sciences we are confronting a realm of hidden subjectivity culturally different than that of our biomedical science.
Perhaps our ability to effectively and respectfully navigate cultural differences within this realm is significantly impaired if we are not more fully cognizant of our own hidden subjectivities. Invoking a cultural lens would not only allow us to more empathetically consider indigenous perspectives, we could use the cultural lens to ask how our ideas about subject/object separation might be serving to limit our own scope of inquiry. Consider the challenging quote from the influential Lakota scholar Vine Deloria Jr.:
Science insists, albeit at a great price in understanding, that the observer be as detached as possible from the event he or she is observing. Indians know that human beings must participate in events, not isolate themselves from occurrences in the physical world. Indians thus obtain information from birds, animals, rivers and mountains which is inaccessible to modern science". [44], p 40.
This quote will often evoke significant dissonance from scientists. It is important to hold this dissonance despite any feelings of destabilization. Since the time of Immanuel Kant, natural philosophy of Europe has also recognized and emphasized the participation of man’s own mind in the perception and observation of phenomena [11, 35]. While this idea is largely undisputed, it is left out of account in many scientific disciplines, including nutrition, trumped by the idea that nature is to be studied as objects independent of ourselves. Perhaps the enormous gains in accuracy and precision derived from our lens of objectification has also excluded any residual sense of the conscious participation alluded to by indigenous scholars [14, 17, 36]. Perhaps there is something we can learn about ourselves from encountering and contemplating indigenous subjectivities. The late Paul Schultz, an Elder, spiritual leader and Chair of the Board of Trustees at White Earth Tribal & Community College put it this way:
"A problem with Western Science, that is inherently its own problem, is that in its quest for excellence, in so many ways it makes the mistake of running over or not noticing what other people may have to contribute, in its effort to not only to do ‘good research’, but also to protect what scientists feel is the integrity of the scientific process". [45]
Must concern for scientific integrity cause us to dismiss out of hand entire systems of knowledge because they seem "unscientific" upon superficial inspection? Given our overlooked and unexamined subjectivities, the powerful forces of professionalism and peer approval can lead even the most fair-minded of scientists to dismiss or hold in abeyance any human knowledge unless and until it can be tested scientifically, within the framing, models and methods deemed valid by professional peers. Invoking a cultural lens through which to view such situations allows us to culturally situate our established practices of knowledge construction. If we are able to cultivate a greater collective awareness of the contingency of our current epistemic standards, we can also begin to see other possibilities begin to emerge. Perhaps there are ways to maintain scientific integrity while being more open to the idea that culturally different knowledge systems might also have their own integrity when viewed from the standpoint of their culturally distinct background assumptions. Perhaps exploring the field of cultural difference within the realm of hidden subjectivities can help us to recognize how, epistemologically speaking, there may be more cards in the deck than we have been playing.