WHO: Obesity: preventing and managing the global epidemic: report of a WHO consultation. World Health Organ Tech Rep Ser. 2000, 894: 1-253.
Google Scholar
WHO: WHO technical report. Obesity-preventing and managing the global epidemic. 2000, Geneva: World Health Organization
Google Scholar
Hedley AA, Ogden CL, Johnson CL, et al: Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. JAMA. 2004, 291: 2847-2850. 10.1001/jama.291.23.2847.
CAS
PubMed
Google Scholar
Visscher TL, Seidell JC, Menotti A, et al: Underweight and overweight in relation to mortality among men aged 40–59 and 50–69 years: the Seven Countries Study. Am J Epidemiol. 2000, 15: 660-666.
Google Scholar
Controlling the global obesity epidemic. 2011
Flynn MA, McNell DA, Maloff B, Mutasingwa D, Wu M, Ford C, Tough SC: Reducing obesity and related chronic disease risk in children and youth: a synthesis of evidence with “best practice” recommendations. Obes Rev. 2006, Suppl 1: 7-66.
Google Scholar
Halbach SM, Flynn J: Treatment of obesity-related hypertension in children and adolescents. Curr Hypertens Rep. 2013, 15 (3): 224-231. 10.1007/s11906-013-0334-7.
CAS
PubMed
Google Scholar
Moreno G, Johnson-Shelton D, Boles S: Prevalence and prediction of overweight and obesity among elementary school students. J Sch Health. 2013, 83: 157-163. 10.1111/josh.12011.
PubMed
PubMed Central
Google Scholar
Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, et al: National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 Country-years and 2.7 million participants. Lancet. 2011, 378: 31-40. 10.1016/S0140-6736(11)60679-X.
CAS
PubMed
Google Scholar
Steinman M, Lee S, John Boscardin W, Miao Y, Fung K, Moore K, et al: Patterns of multimorbidity in elderly veterans. J Am Geriatr Soc. 2012, 60: 1872-1880. 10.1111/j.1532-5415.2012.04158.x.
PubMed
PubMed Central
Google Scholar
Wild S, Roglic G, Green A, Sicree R, King H: Global prevalence of diabetes. Diabetes Care. 2004, 27: 1047-1053. 10.2337/diacare.27.5.1047.
PubMed
Google Scholar
Katsumata Y, Todoriki H, Higashiuesato Y, Yasura S, Willcox DC, et al: Metabolic syndrome and cognitive decline among the oldest old in Okinawa: in search of a mechanism: the KOCOA project. J Gerontol A Biol Sci Med Sci. 2012, 67A: 126-134. 10.1093/gerona/glr189.
Google Scholar
Ervin RB: Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States. Nat Statistics Rep. 2009, 13: 1-8.
Google Scholar
De Rerranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifal N: Prevalence of the metabolic syndrome in American adolescents: findings from the third national health and nutrition examination survey. Circulation. 2004, 110: 2494-2499. 10.1161/01.CIR.0000145117.40114.C7.
Google Scholar
Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L: Midlife overweight and obesity increase late-life dementia risk. Neurology. 2011, 76: 1568-1574. 10.1212/WNL.0b013e3182190d09.
CAS
PubMed
PubMed Central
Google Scholar
Stewart R, Masaki K, Xue QL, Peila R, Petrovitch H, White LR, Launer LJ: A 32-year prospective study of change in body weight and incident dementia: the Honolulu-Asia aging study. Arch Neurol. 2005, 62: 55-60. 10.1001/archneur.62.1.55.
PubMed
Google Scholar
Elias MF, Beiser A, Wolf PA, Au R, White R, D’Agostino RB: The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham cohort. Arch Neurol. 2000, 57: 808-813. 10.1001/archneur.57.6.808.
CAS
PubMed
Google Scholar
Singh-Manoux A, Czernichow S, Elbaz A, Dugravot A, Sabia S, Hagger-Johnson EJ, et al: Obesity phenotypes in midlife and cognition in early old age: the Whitehall II cohort study. Neurology. 2012, 79: 755-762. 10.1212/WNL.0b013e3182661f63.
PubMed
PubMed Central
Google Scholar
Strachan MW: R D Lawrence Lecture 2010: the brain as a target organ in Type 2 diabetes: exploring the links with cognitive impairment and dementia. Diabet Med. 2011, 28: 141-147. 10.1111/j.1464-5491.2010.03199.x.
CAS
PubMed
Google Scholar
Strachan MW, Reynolds RM, Marioni RE, Price JF: Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol. 2011, 7: 108-114. 10.1038/nrendo.2010.228.
CAS
PubMed
Google Scholar
Gold SM, Dziobek I, Sweat V, Tirsi A, Rogers K, et al: Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia. 2007, 50: 711-719. 10.1007/s00125-007-0602-7.
CAS
PubMed
Google Scholar
Panza F, Firsardi V, Capurso C, Imbimbo BP, Vendemiale G, et al: Metabolic syndrome and cognitive impairment: current epidemiology and possible underlying mechanisms. J Alzheimers Dis. 2010, 21: 691-724.
PubMed
Google Scholar
Yaffe K, Weston AL, Blackwell T, Krueger KA: The metabolic syndrome and devleopment of cognitive impairment among older women. Arch Neurol. 2009, 66: 324-328. 10.1001/archneurol.2008.566.
PubMed
PubMed Central
Google Scholar
Kanoski SE, Davidson TL: Different patterns of memory impairments accompany short- and longer-term maintenance on a high-energy diet. J Exp Psychol Anim Behav Process. 2010, 36: 313-319.
PubMed
Google Scholar
Gross LS, Li L, Ford ES, Liu S: Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am J Clin Nutr. 2004, 79: 774-779.
CAS
PubMed
Google Scholar
Tappy L, Le KA, Tran C, Paquot N: Fructose and metabolic diseases: new findings, new questions. Nutrition. 2010, 26: 1044-1049. 10.1016/j.nut.2010.02.014.
CAS
PubMed
Google Scholar
Bray GA, Popkin BM: Calorie-sweetened beverages and fructose: what have we learned 10 years later. Pediatr Obes. 2013, 8 (4): 242-428. 10.1111/j.2047-6310.2013.00171.x.
CAS
PubMed
Google Scholar
Malik VS, Schulze MB, Hu FB: Intake of sugar-sweetened beverages for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol. 2006, 19: 16-24.
Google Scholar
Goran MI, Ulijaszek SJ, Ventura EE: High frructose corn syrup and diabetes prevalence: a global perspective. Glob Public Health. 2013, 8: 55-64. 10.1080/17441692.2012.736257.
PubMed
Google Scholar
Goran MI, Ulijaszek SJ, Ventura EE: High fructose corn syrup and diabetes prevalence: a global perspective. 2012, Glob: Public Health
Google Scholar
Sun SZ, Anderson GH, Flickinger BD, Williamson-Hughes PS, Empie MW: Fructose and non-fructose sugar intakes in the US population and their associations with indicators of metabolic syndrome. Food Chem Toxicol. 2011, 49: 2875-2882. 10.1016/j.fct.2011.07.068.
CAS
PubMed
Google Scholar
Agrawal R, Gomez-Pinilla F: Metabolic syndrome in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition. J Physiol. 2012, 590: 2485-2499. 10.1113/jphysiol.2012.230078.
CAS
PubMed
PubMed Central
Google Scholar
Ross AP, Bartness TJ, Mielke JG, Parent MB: A high fructose diet impairs spatial memory in male rats. Neurobiol Learn Mem. 2009, 92: 410-416. 10.1016/j.nlm.2009.05.007.
CAS
PubMed
PubMed Central
Google Scholar
Costello DA, Claret M, Al-Qassab H, Plattner F, Irvine EE, et al: Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLOS One. 2012, 7: e31124-10.1371/journal.pone.0031124.
CAS
PubMed
PubMed Central
Google Scholar
Burkhalter TM, Hillman CH: A narrative review of physical activity, nutrition, and obesity to cognition and scholastic performance across the human lifespan. Adv Nutr. 2011, 2: 201S-206S. 10.3945/an.111.000331.
PubMed
PubMed Central
Google Scholar
De Rooij SR, Wouters H, Yonker JE, Painter RC, Roseboom TJ: Prenatal undernutrition and cognitive function in late adulthood. Proc Natl Acad Sci. 2010, 107: 16881-16888. 10.1073/pnas.1009459107.
CAS
PubMed
PubMed Central
Google Scholar
Simonson M, Chow BF: Maxe studies on progeny of underfed mother rats. J Nutr. 1970, 33: 373-385.
Google Scholar
Bush M, Leathwood PD: Effect of different regimens of early malnutrition on behavioral development and adult avoidance learning in Swiss white mice. Br J Nutr. 1975, 33: 373-385. 10.1079/BJN19750042.
CAS
PubMed
Google Scholar
Rogers PJ, Tonkiss J, Smart JL: Incidental learning is impaired during early-life undernutrition. Dev Psychobiol. 1986, 19: 113-124. 10.1002/dev.420190204.
CAS
PubMed
Google Scholar
Ranade SC, et al: Different types of nutritional deficiencies affect different domains of spatial memory function checked in a radial arm maze. Neuroscience. 2008, 152: 859-866. 10.1016/j.neuroscience.2008.01.002.
CAS
PubMed
Google Scholar
Bhate V, et al: Vitamin B12 status of pregnant Indian women and cognitive function in their 9-year-old children. Food Nutr Bull. 2008, 29: 249-254.
PubMed
PubMed Central
Google Scholar
Freeman HE, Klein RE, Kagan J, Yarbrough C: Relations between nutrition and cognition in rural Guatemala. Am J Public Health. 1977, 67: 233-239. 10.2105/AJPH.67.3.233.
CAS
PubMed
PubMed Central
Google Scholar
Rampersaud GC, Pereira MA, Girard BL, Adams J, Metzl JD: Breakfast habits, nutritional status, body weight, and academic perfomance in children and adolescents. J Am Diet Assoc. 2005, 105 (5): 743-760. 10.1016/j.jada.2005.02.007.
PubMed
Google Scholar
Siega-Riz A, Popkin B, Carson T: Trends in breakfast consumption for children in the United States from 1965–1991. Am J Clin Nutr. 1998, 67: 748S-756S.
CAS
PubMed
Google Scholar
Pollitt E, Lewis NL, Garza C, Shulman RJ: Fasting and cognitive function. J Psychiat Res. 1982–1983, 17: 169-174. 10.1016/0022-3956(82)90018-8.
Google Scholar
Wesnes KA, Pincock C, Richardson D, Helm G, Hails S: Breakfast reduces decline in attention and memory over the morning in schoolchildren. Appetite. 2003, 41: 329-331. 10.1016/j.appet.2003.08.009.
PubMed
Google Scholar
Mahoney CR, Taylor HA, Kanarek RB, Samuel P: Effect of breakfast composition on cognitive processes in elementary school children. Physiol Behav. 2005, 85: 635-645. 10.1016/j.physbeh.2005.06.023.
CAS
PubMed
Google Scholar
Craig A, Richardson E: Effects of experimental and habitual lunch-size on performance, arousal, hunger and mood. Int Arch Occup Environ Health. 1989, 61: 313-319. 10.1007/BF00409386.
CAS
PubMed
Google Scholar
Wesnes KA, Pincock C, Scholey A: Breakfast is associated with enhanced cognitive function in schoolchildren: an internet based study. Appetite. 2012, 59: 646-649. 10.1016/j.appet.2012.08.008.
PubMed
Google Scholar
Liu J, Hwang WT, Dickerman B, Compher C: Regular breakfast consumption is associated with increased IQ in kindergarten children. Earlyt Hum Dev. 2013, 89 (4): 257-262. 10.1016/j.earlhumdev.2013.01.006.
Google Scholar
Widenhorn-Muller K, Hille K, Klenk J, Weiland U: Influence of having breakfast on cognitive performance and mood in 13-to-20-year-old high school students: results of a crossover trial. Pediatrics. 2008, 122: 279-284. 10.1542/peds.2007-0944.
PubMed
Google Scholar
Hu F, Van Dam R, Liu S: Diet and risk of Type II diabetes: the role of types of fat and carbohydrate. Diabetologia. 2001, 44: 805-817. 10.1007/s001250100547.
CAS
PubMed
Google Scholar
Sabia S, Kivimaki M, Shipley MJ, Marmot MG, Singh-Manoux A: Body mass index over the adult life course and cognition in late midlife: the Whitehall II Cohort study. Am J Clin Nutr. 2009, 89: 601-607. 10.3945/ajcn.2008.26482.
CAS
PubMed
Google Scholar
Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB: Obesity, diabetes and cognitive deficit: the Framingham heart study. Neurobiol Aging. 2005, 26: 11-16. 10.1016/j.neurobiolaging.2005.08.019.
PubMed
Google Scholar
Jeong SK, Nam HS, Son MH, Son EJ, Cho KH: Interactive effect of obesity indexes on cognition. Dement Geriatr Cogn Disord. 2005, 19: 91-96. 10.1159/000082659.
PubMed
Google Scholar
Okosun IS, Liao Y, Rotimi CN, Choi S, Cooper RS: Predictive values of waist circumference for dyslipidemia, type 2 diabetes and hypertension in overweight White, Black, and Hispanic American adults. J Clin Epidemiol. 2000, 53: 401-408. 10.1016/S0895-4356(99)00217-6.
CAS
PubMed
Google Scholar
Benito-Leon J, Mitchell AJ, Hernandez-Gallego J, Bermejo-Pareja F: Obesity and impaired cognitive functioning in the elderly: a population-based cross-sectional study (NEDICES). Eur J Neurol. 2013
Google Scholar
Cournot M, Marquie JC, Ansiau D, Martinaud C, Fonds H, Ferrieres J, Ruidavets JB: Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology. 2006, 67: 1208-1214. 10.1212/01.wnl.0000238082.13860.50.
CAS
PubMed
Google Scholar
Gunstad J, Paul RH, Cohen RA, Tate DF, Gordon E: Obesity is associated with memory deficits in young and middle-aged adults. Eat Weight Disord. 2006, 11: e15-19.
CAS
PubMed
Google Scholar
Kilander L, Nyman H, Boberg M, Lithell H: Cognitive function, vascular risk factors and education: a cross-sectional study based on a cohort of 70-year-old men. J Intern Med. 1997, 242: 313-321. 10.1046/j.1365-2796.1997.00196.x.
CAS
PubMed
Google Scholar
Wolf PA, Beiser A, Elias MF, Au R, Vasan RS, Seshadri S: Relation of obesity to cognitive function: importance of central obesity and synergistic influence of concomitant hypertension: the Framingham heart study. Curr Alzheimer Res. 2007, 4: 111-116. 10.2174/156720507780362263.
CAS
PubMed
Google Scholar
Sturman MT, De Leon CF, Bienias JL, Morris MC, Wilson RS, Evans DA: Body mass index and cognitive decline in a biracial community population. Neurology. 2008, 70: 360-367. 10.1212/01.wnl.0000285081.04409.bb.
CAS
PubMed
Google Scholar
Yu ZB, Han SP, Cao XG, Guo XR: Intelligence in relation to obesity: a systematic review and meta-analysis. Obes Rev. 2010, 11: 656-670. 10.1111/j.1467-789X.2009.00656.x.
CAS
PubMed
Google Scholar
Li X: A study of intelligence and personality in children with simple obesity. Int J Obes Relat Metab Disord. 1995, 19: 355-357.
CAS
PubMed
Google Scholar
Tascilar ME, Turkkahraman D, Oz O, Yucel M, Taskesen M, Eker I, et al: P300 auditory event-related potentials in children with obesity: is childhood obesity related to impairment in cognitive functions. Pediatr Diabetes. 2011, 12: 589-595. 10.1111/j.1399-5448.2010.00748.x.
CAS
PubMed
Google Scholar
Khaliq F, Alam KK, Vaney N, Singh TB: Sensory, cognitive and motor assessment of children with poor academic performance: an auditory evoked potential study. Indian J Physiol Pharmacol. 2010, 54: 255-264.
PubMed
Google Scholar
Datar A, Sturm R: Childhood overweight and elementary school outcomes. Int J Obes. 2006, 30: 1449-1460. 10.1038/sj.ijo.0803311.
CAS
Google Scholar
Yau PL, Castro MG, Tagani A, Tsui WH, Convit A: Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatrics. 2012, 130: e856-864. 10.1542/peds.2012-0324.
PubMed
PubMed Central
Google Scholar
Anstey KJ, Cherbuin N, Budge M, Young J: Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2011, 12: e426-e437. 10.1111/j.1467-789X.2010.00825.x.
CAS
PubMed
Google Scholar
Gorospe EC, Dave JK: The risk of dementia with increased body mass index. Ageing. 2007, 36: 23-29.
Google Scholar
Gustafson D: Adiposity indices and dementia. Lancet Neurol. 2006, 5: 713-720. 10.1016/S1474-4422(06)70526-9.
PubMed
Google Scholar
Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I: An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med. 2003, 163: 1524-1528. 10.1001/archinte.163.13.1524.
PubMed
Google Scholar
Beydoun MA, Beydoun HA, Wang Y: Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obes Rev. 2008, 9: 204-218. 10.1111/j.1467-789X.2008.00473.x.
CAS
PubMed
PubMed Central
Google Scholar
Dahl AK, Hassing LB: Obesity and cognitive aging. Epidemiol Rev. 2012, 35 (10): 22-32.
PubMed
Google Scholar
Berrino F: Western diet and Alzheimer’s disease. Epidemiol Prev. 2002, 26 (3): 107-115.
PubMed
Google Scholar
Pasinetti G, Eberstein J: Metabolic syndrome and the role of dietary lifestyles in Alzheimer’s disease. J Neurochem. 2008, 106: 1503-1514. 10.1111/j.1471-4159.2008.05454.x.
CAS
PubMed
PubMed Central
Google Scholar
Benton D, Maconie A, Williams C: The influence of the glycemic load of breakfast on the behaviour of children in school. Physiol Behav. 2007, 92: 717-724. 10.1016/j.physbeh.2007.05.065.
CAS
PubMed
Google Scholar
Eskelinen M, Ngandu T, Helkala E, Tuomilehto J, Nissinen A, Soininen H, et al: Fat intake at midlife and cognitive impairment later in life: a population-based CAIDE study. Int J Geriatr Psychiatry. 2008, 23: 741-747. 10.1002/gps.1969.
PubMed
Google Scholar
Jurdak N, Lichtenstein AH, Kanarek RB: Diet-induced obesity and spatial cognition in young male rats. Nutr Neurosci. 2008, 11: 48-54. 10.1179/147683008X301333.
CAS
PubMed
Google Scholar
Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS: Dietary fat intake and 6-year cognitive change in an older biracial community population. Neurology. 2004, 62: 1573-1579. 10.1212/01.WNL.0000123250.82849.B6.
CAS
PubMed
Google Scholar
Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry CP, Yaffe K: Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ. 2005, 330: 1360-10.1136/bmj.38446.466238.E0.
PubMed
PubMed Central
Google Scholar
Luchsinger JA, Tang MX, Shea S, Mayeux R: Caloric intake and the risk of Alzheimer’s disease. Arch Neurol. 2002, 59: 1258-1263. 10.1001/archneur.59.8.1258.
PubMed
Google Scholar
Kivipelto M, Ngandu T, Fratiglioni L, et al: Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol. 2005, 62: 1556-1560. 10.1001/archneur.62.10.1556.
PubMed
Google Scholar
Rosengren A, Skoog I, Gustafson D, Wilhelmsen L: Body mass index, other cardiovascular risk factors, and hospitalization for dementia. Arch Intern Med. 2005, 165: 321-326. 10.1001/archinte.165.3.321.
PubMed
Google Scholar
Kivipelto M, Helkala EL, Hanninen T, et al: Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology. 2001, 56: 1683-1689. 10.1212/WNL.56.12.1683.
CAS
PubMed
Google Scholar
Finkel D, Reynolds C, McArdle JJ, et al: Latent growth curve analyses of accelerating decline in cognitive abilities in late adulthood. Dev Psychol. 2003, 39: 535-550.
PubMed
Google Scholar
Schaie KW: Developmental influences on adult intelligence- the Seattle longitudinal study. 2005, New York: Oxford University Press
Google Scholar
Dahl A, Hassing LB, Fransson E, et al: Being overweight in midlife is associated with lower cognitive ability and steeper cognitive decline in late life. J Gerontol A Biol Sci Med Sci. 2010, 65: 57-62.
PubMed
Google Scholar
Solfrizzi V, Scafato E, Capurso C, D’Introno A, Colacicco AM, Frisardi V, et al: For the Italian longitudinal study on aging working group, metabolic syndrome, mild cognitive impairment, and progression to dementia: the Italian longitudinal study on aging. Neurobiol Aging. 2009, 32: 1932-1941.
PubMed
Google Scholar
Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB: Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes. 2003, 27: 260-268. 10.1038/sj.ijo.802225.
CAS
Google Scholar
Bray GA, Nielsen SJ, Popkin BM: Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004, 79: 537-543.
CAS
PubMed
Google Scholar
Marriott BP, Olsho L, Hadden L, Connor P: Intake of added sugars and selected nutrients in the United States, National Health and Nutrition Examination Survey (NHANES) 2003–2006. Crit Rev Food Sci Nutr. 2010, 50: 228-258. 10.1080/10408391003626223.
CAS
PubMed
Google Scholar
Hanover L, White J: Manufacturing, composition, and applications of fructose. Am J Clin Nutr. 1993, 58: 724S-732S.
CAS
PubMed
Google Scholar
Wells HF, Buzby JC: A report from the economic research service: dietary assessment of major trends in U.S. food consumption, 1970–2005. United States Department of Agriculture; Washington, DC. Economic Information Bulletin. 2008, 33: 1-20.
Google Scholar
Popkin BM, Armstrong LE, Bray GM, Caballero B, Frei B, Willett WC: A new proposed guidance system for beverage consumption in the United States. Am J Clin Nutr. 2006, 83: 529-542.
CAS
PubMed
Google Scholar
Fulgoni VL, Quann EE: National trends in beverage consumption in children from birth to 5 years: analysis of NHANES across three decades. Nutr J. 2012, 11: 92-10.1186/1475-2891-11-92.
PubMed
PubMed Central
Google Scholar
Glinsmann WH, Irausquin H, Park YK: Evaluation of health aspects of sugars contained in carbohydrate sweeteners: reports of sugars task force. J Nutr. 1986, 116: S1-216.
CAS
PubMed
Google Scholar
Glinsmann WH, Bowman BA: The public health significance of dietary fructose. Am J Clin Nutr. 1993, 58: 820S-823S.
CAS
PubMed
Google Scholar
Bantle J: Dietary fructose and metabolic syndrome and diabetes. J Nutr. 2009, 139: 1263S-1268S. 10.3945/jn.108.098020.
CAS
PubMed
PubMed Central
Google Scholar
Saad MF, Khan A, Sharma A, Michael R, Riad-Gabriel MG, Boyadjian R, et al: Physiological insulinemia actuely modulates plasma leptin. Diabetes. 1998, 47: 544-549. 10.2337/diabetes.47.4.544.
CAS
PubMed
Google Scholar
Ritzkalla SW: Health implications of fructose consumption: a review of recent data. Nutr Metab. 2010, 7: 82-10.1186/1743-7075-7-82.
Google Scholar
Bray G: How bad is fructose?. Am J Clin Nutr. 2007, 86: 895-896.
CAS
PubMed
Google Scholar
Bocarsly ME, Powell ES, Avena NM, Hoebel BG: High-fructose corn syrup causes characteristics of obesity in rats: increased body weight, body fat and triglyceride levels. Pharmacol Biochem Behav. 2010, 97: 101-106. 10.1016/j.pbb.2010.02.012.
CAS
PubMed
PubMed Central
Google Scholar
Shapiro A, Mu W, Roncal C, Duerenberg P: Fructose-induced leptin resistance exacerbates weight gain in response to high-fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008, 295: R1370-1375. 10.1152/ajpregu.00195.2008.
CAS
PubMed
PubMed Central
Google Scholar
Cox CL, Stanhope KL, Schwarz JM, Graham JL, Hatcher B, Griffen SC, et al: Consumption of fructose-sweetened beverages for 10 weeks reduces net fat oxidation and energy expenditure in overweight/obese men and women. Eur J Clin Nutr. 2012, 66: 201-208. 10.1038/ejcn.2011.159.
CAS
PubMed
Google Scholar
Maier IB, Stricker L, Ozel Y, Wagnerberger S, Bischoff SC, Bergheim I: A low fructose diet in the treatment of pediatric obesity: a pilot study. J Nutr. 2011, 142: 251-257.
Google Scholar
Everitt AV, Hilmer SN, Brand-Miller JC, Jamieson HA, Truswell AS, et al: Dietary approaches that delay age-related diseases. Clin Interv Aging. 2006, 1: 11-31. 10.2147/ciia.2006.1.1.11.
CAS
PubMed
PubMed Central
Google Scholar
Havel P: Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev. 2005, 63: 133-157. 10.1111/j.1753-4887.2005.tb00132.x.
PubMed
Google Scholar
Malik VS, Popkin BM, Bray GA, Despres JP, Hu FB: Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation. 2010, 121: 1356-1364. 10.1161/CIRCULATIONAHA.109.876185.
PubMed
PubMed Central
Google Scholar
Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ: Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr. 2002, 76: 911-922.
CAS
PubMed
Google Scholar
Stanhope K: Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu Rev Med. 2012, 63: 329-343. 10.1146/annurev-med-042010-113026.
CAS
PubMed
Google Scholar
Bremer AA, Stanhope KL, Graham JL, Cummings BP, Wang W, Saville BR, Harvel PJ: Fructose-fed rhesus monkeys: a nonhuman primate model of insulin resistance, metabolic syndrome, and type 2 diabetes. Clin Transl Sci. 2011, 4: 243-252. 10.1111/j.1752-8062.2011.00298.x.
CAS
PubMed
PubMed Central
Google Scholar
Ferder L, Ferder MD, Inserra F: The role of high-fructose corn syrup in metabolic syndrome and hypertension. Curr Hypertens Res. 2010, 12: 105-112. 10.1007/s11906-010-0097-3.
CAS
Google Scholar
Aller EE, Abete I, Astrup A, Martinez JA, Van Baak MA: Starches, sugars and obesity. Nutrients. 2011, 3: 341-369. 10.3390/nu3030341.
CAS
PubMed
PubMed Central
Google Scholar
Stranahan AM, Norman ED, Lee K, et al: Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus. 2008, 18: 1085-1088. 10.1002/hipo.20470.
PubMed
PubMed Central
Google Scholar
Ye X, Gao X, Scott T, Tucker KL: Habitual sugar intake and cognitive function among middle-aged and older Puerto Ricans without diabetes. Br J Nutr. 2011, 106: 1423-1432. 10.1017/S0007114511001760.
CAS
PubMed
PubMed Central
Google Scholar
Jurdak N, Kanarek RB: Sucrose-induced obesity impairs novel object recognition learning in young rats. Physiol Behav. 2009, 96: 1-5. 10.1016/j.physbeh.2008.07.023.
CAS
PubMed
Google Scholar
Murray AJ, Knight NS, Cochlin LE, McAleese S, Deacon RM, Rawlins JN, et al: Deterioration of physical performance and cognitive function in rats with short-term high-fat feeding. FASEB J. 2009, 23 (12): 4353-4360. 10.1096/fj.09-139691.
CAS
PubMed
Google Scholar
D’Hooge R, De Deyn PP: Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev. 2001, 36: 60-90. 10.1016/S0165-0173(01)00067-4.
PubMed
Google Scholar
Papanikolaou Y, Palmer H, Binns MA, Jenkins DJ: Better cognitive performance following a low-glycemic-index compared with a high-glycemic-index carbohydrate meal in adults with type 2 diabetes. Diabetologia. 2006, 49: 855-862. 10.1007/s00125-006-0183-x.
CAS
PubMed
Google Scholar
Nabb S, Benton D: The influence on cognition of the interaction between the macro-nutrient content of breakfast and glucose tolerance. Physiol Behav. 2006, 87: 16-23. 10.1016/j.physbeh.2005.08.034.
CAS
PubMed
Google Scholar
Kanoski SE, Davidson TL: Western diet consumption and cognitive impairment: links to hippocamal dysfunction and obesity. Physiol Behav. 2011, 103: 59-68. 10.1016/j.physbeh.2010.12.003.
CAS
PubMed
Google Scholar
Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez-Pinilla F: A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience. 2002, 112: 803-814. 10.1016/S0306-4522(02)00123-9.
CAS
PubMed
Google Scholar
Farr SA, Yamada KA, Butterfield DA, Abdul HM, Xu L, Miller NE, et al: Obesity and hypertriglyceridemia produce cognitive impairment. Endocrinology. 2008, 149: 2628-2636. 10.1210/en.2007-1722.
CAS
PubMed
PubMed Central
Google Scholar
Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann R, Egan JM, Mattson MP: Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus. 2008, 18: 1085-1088. 10.1002/hipo.20470.
PubMed
PubMed Central
Google Scholar
Weaver JD, Huang MH, Albert M, et al: Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology. 2002, 59: 371-378. 10.1212/WNL.59.3.371.
CAS
PubMed
Google Scholar
Yaffe K, Lindquist K, Penninx BW, et al: Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology. 2003, 61: 76-80. 10.1212/01.WNL.0000073620.42047.D7.
CAS
PubMed
Google Scholar
Engelhart MJ, Geerlings MI, Meijer J, et al: Inflammatory proteins in plasma and the risk of dementia: the Rotterdam study. Arch Neurol. 2006, 61: 668-672.
Google Scholar
Vachharajani V, Granger DN: Adipose tissue: a motor for the inflammation associated with obesity. IUBMB. 2009, 6: 424-430.
Google Scholar
Sorensen LB, Raben A, Stender S, et al: Effect of sucrose on inflammatory markers in overweight humans. Am J Clin Nutr. 2005, 82: 421-427.
CAS
PubMed
Google Scholar
Cerejeira J, Firmino H, Vaz-Serra A, et al: The neuroinflammatory hypothesis of delirium. Acta Neuropathol. 2010, 119: 737-754. 10.1007/s00401-010-0674-1.
PubMed
Google Scholar
Hudetz JA, Gandhi SD, Iqbal Z, et al: Elevated postoperative inflammatory biomarkers are associated with short- and medium-term cognitive dysfunction after coronary artery surgery. J Anesth. 2011, 25: 1-9. 10.1007/s00540-010-1042-y.
PubMed
Google Scholar
Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS: Long-term consequences of postoperative congitive dysfunction. Anesthesiology. 2009, 110 (3): 548-555. 10.1097/ALN.0b013e318195b569.
PubMed
Google Scholar
Kalman J, Juhasz A, Bogats G, Babik B, Rimanoczy A, et al: Elevated levels of inflammatory biomarkers in the cerebrospinal fluid after coronary artery bypass surgery are predictors of cognitive decline. Neurochem Int. 2006, 48: 177-180. 10.1016/j.neuint.2005.10.007.
CAS
PubMed
Google Scholar
Stephan BC, Wells JC, Brayne C, Albanese E, Siervo M: Increased fructose intake as a risk factor for dementia. J Gerontol A Biol Sci Med Sci. 2010, 65: 809-814.
CAS
PubMed
Google Scholar
Yaffe K, Kanaya A, Lindquist K, et al: The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 2004, 292: 2237-2242. 10.1001/jama.292.18.2237.
CAS
PubMed
Google Scholar
Schretlen DJ, Inscore AB, Jinnah HA, et al: Serum uric acid and cognitive function in community-dwelling older adults. Neuropsychology. 2007, 21: 136-140.
PubMed
Google Scholar
Ruggiero C, Cherubini A, Lauretani F, et al: Uric acid and dementia in community-dwelling older persons. Dement Geriatr Cogn Disord. 2009, 27: 382-389. 10.1159/000210040.
CAS
PubMed
PubMed Central
Google Scholar
Euser SM, Hofman A, Westendorp RG, Breteler MM: Serum uric acid and cognitive function and dementia. Brain. 2009, 132: 377-382.
CAS
PubMed
Google Scholar
Cao D, Lu H, Lewis TL, Li L: Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem. 2007, 282: 36275-36282. 10.1074/jbc.M703561200.
CAS
PubMed
Google Scholar
Craft S, Asthana S, Newcomer JW, Wilkenson CW, Matos IT, et al: Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry. 1999, 56 (12): 1135-1140. 10.1001/archpsyc.56.12.1135.
CAS
PubMed
Google Scholar
Banks WA, Jaspan JB, Huang W, Kastin AJ: Transport of insulin across the blood–brain barrier: saturability at euglycemic doses of insulin. Peptides. 1997, 18: 1423-1429. 10.1016/S0196-9781(97)00231-3.
CAS
PubMed
Google Scholar
Reagan L: Insulin signaling effects on mood and memory. Curr Opin Pharmacol. 2007, 7 (1): 633-637.
CAS
PubMed
PubMed Central
Google Scholar
Kim DS, Jeong SK, Kim HR, Kim DS, Chae SW, Chae JH: Effects of triglyceride on ER stress and insulin resistance. Biochem Biophys Res Commun. 2007, 363: 140-145. 10.1016/j.bbrc.2007.08.151.
CAS
PubMed
Google Scholar
Drew PA, Smith E, Thomas PD: Fat distribution and changes in the blood brain barrier in a rat model of cerebral arterial fat embolism. J Neurosci Sci. 1998, 156: 138-143.
CAS
Google Scholar
Funari VA, Crandall JE, Tolan DR: Fructose metabolism in the cerebellum. Cerebellum. 2007, 6: 130-140. 10.1080/14734220601064759.
CAS
PubMed
Google Scholar
Neuringer M, Anderson GJ, Connor WE: The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annu Rev Nutr. 1988, 8: 517-541. 10.1146/annurev.nu.08.070188.002505.
CAS
PubMed
Google Scholar
Uauy R, Dangour AD: Nutrition in brain development and aging: role of essential fatty acids. Nutr Rev. 2006, 64: S24-S33. 10.1301/nr.2006.may.S24-S33.
PubMed
Google Scholar
Soderberg M, Edlund C, Kristensson K, Daliner G: Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids. 1991, 26: 421-425. 10.1007/BF02536067.
CAS
PubMed
Google Scholar
Suzuki H, Park SJ, Tamura M, Ando S: Effect of the long-term feeding of dietary lipids on the learning ability, fatty acid composition of brain stem phospholipids and synaptic membrane fluidity in adult mice: a comparison of sardine oil diet with palm oil diet. Mech Ageing Dev. 1998, 101: 119-128. 10.1016/S0047-6374(97)00169-3.
CAS
PubMed
Google Scholar
Moriguchi T, Salem N: Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J Neurochem. 2003, 87: 297-309. 10.1046/j.1471-4159.2003.01966.x.
CAS
PubMed
Google Scholar
Sugimoto Y, Taga C, Nishiga M, Fujiwara M, Konishi F, Tanaka K, Kamel C: Effect of docosahexaenoic acid-fortified Chlorella vulgaris strain CK22 on the radial maze performance in aged mice. Biol Pharm Bull. 2002, 25: 1090-1092. 10.1248/bpb.25.1090.
CAS
PubMed
Google Scholar
Su H: Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem. 2010, 21: 364-373. 10.1016/j.jnutbio.2009.11.003.
CAS
PubMed
Google Scholar
Dyall SC, Michael GJ, Michael-Titus AT: Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J Neurosci Res. 2010, 88: 2091-2102. 10.1002/jnr.22390.
CAS
PubMed
Google Scholar
Moranis A, Delpech JC, De Smedt-Peyrusse V, Aubert A, Guesnet P, et al: Long term adequate n-3 polyunsaturated fatty acid diet protects from depressive-like behavior but not from working memory disruption and brain cytokine expression in aged mice. Brain Behav Immun. 2011, 26: 721-731.
PubMed
Google Scholar
Labrousse VF, Nadjar A, Joffre C, Costes L, Aubert A, Gregoire S, et al: Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice. PLOS One. 2012, 7: e36861-10.1371/journal.pone.0036861.
CAS
PubMed
PubMed Central
Google Scholar
Green KN, Martinez-Coria H, Khashwji H, et al: Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J Neurosci. 2007, 27: 4385-4395. 10.1523/JNEUROSCI.0055-07.2007.
CAS
PubMed
Google Scholar
Lebbadi M, Julien C, Phivllay A, Tremblay C, Emond V, Kang JX, Calon F: Endogenous conversion of omega-6 into omega-3 fatty acids improves neuropathology in an animal model of Alzheimer’s disease. J Alzheimers Dis. 2011, 27: 853-869.
CAS
PubMed
Google Scholar
Richardson AJ, Burton JR, Sewell RP, Sprechkelsen TF, Montgomery P: Docosahexaenoic acid for reading, cognition and behavior in children aged 7–9 years: a randomized, controlled trial (the DOLAB Study). PLOS One. 2012, 7: e43909-10.1371/journal.pone.0043909.
CAS
PubMed
PubMed Central
Google Scholar
Yurko-Mauro K: Cognitive and cardiovascular benefits of docosahexaenoic acid in aging and cognitive decline. Curr Alzheimer Res. 2010, 7: 190-196. 10.2174/156720510791050911.
CAS
PubMed
Google Scholar
Dangour AD, Allen E, Elbourne D, Fasey N, Fletcher AE, Hardy P, et al: Effect of 2-y n-3 long-chain polyunsaturated fatty acid supplementation on cogntivie function in older people: a randomized, double-blind, controlled trial. Am J Clin Nutr. 2010, 91: 1725-1732. 10.3945/ajcn.2009.29121.
CAS
PubMed
Google Scholar
Sydenham E, Dangour AD, Lim WS: Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database Syst Rev. 2012, 13: CD005379
Google Scholar
Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C, et al: Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA. 2010, 304: 1903-1911. 10.1001/jama.2010.1510.
CAS
PubMed
PubMed Central
Google Scholar
Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, et al: Consumption of fish and n-3 fatty acids and risk of incident Alzheimer’s disease. Arch Neurol. 2003, 60: 940-946. 10.1001/archneur.60.7.940.
PubMed
Google Scholar