Borowitzka MA: Vitamins and fine chemicals from micro-algae. Micro-algal biotechnology. Edited by: Borowitzka LJ. 1988, New York: Cambridge University Press, 153-
Google Scholar
Schubert LE: The use of spirulina and chlorella as food resource for animals and humans. Progressing physiological research. Edited by: Round FE, Chapman DJ. 1988, Bristol, U.K: Biopress Ltd, 23-
Google Scholar
Morita K, Matsueda T, Lida T, Hasegawa T: Chlorella accelerates dioxin excretion in rats. J Nutr. 1999, 129: 1731-1736.
CAS
PubMed
Google Scholar
Morita K, Ogata K, Hasegawa T: Chlorophyll derived from Chlorella inhibits dioxin absorption from the gastrointestinal tract and accelerates dioxin excretion in rats. Environ Health Perspect. 2001, 109: 289-294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okudo M, Hasegawa T, Sonoda M, Okabe T, Tanaka M: The effects of Chlorella on the level of cholesterol in serum and liver. Jpn J Nutr. 1975, 33: 3-8.
Article
Google Scholar
Fujiwara Y, Hirakawa K, Sinpo K: Effect of long-term administration of Chlorella tablets on hyperlipemia. J Jpn Soc Nutr Food Sci. 1990, 43: 167-173.
Article
CAS
Google Scholar
Nakamura T, Hasegawa T, Ueno S, et al: Effect of g-aminobutyric acid-rich Chlorella on blood pressure in mildly hypertensive subjects. Jpn Pharmacol Ther. 2000, 28: 529-533.
Google Scholar
Lee SH, Kang HJ, Lee HJ, Kang MH, Park YK: Six-week supplementation with Chlorella has favorable impact on antioxidant status in Korean male smokers. Nutrition. 2010, 26: 175-183.
Article
CAS
PubMed
Google Scholar
Queiroz ML, Bincoletto C, Valadares MC, Dantas DC, Santos LM: Effects of Chlorella vulgaris extract on cytokines production in Listeria monocytogenes infected mice. Immunopharmacol Immunotoxicol. 2002, 24: 483-496.
Article
CAS
PubMed
Google Scholar
Hasegawa T, Matsuguchi T, Noda K, Tanaka K, Kumamoto S, Shoyama Y, Yoshikai Y: Toll-like receptor 2 is at least partly involved in the antitumor activity of glycoprotein from Chlorella vulgaris. Int Immunopharmacol. 2002, 2: 579-589.
Article
CAS
PubMed
Google Scholar
Tanaka K, Yamada A, Noda K, Hasegawa T, Okuda K, Shoyama Y, Nomoto K: A novel glycoprotein obtained from Chlorella vulgaris strain CK22 shows antimetastatic immunopotentiation. Cancer Immunol Immunother. 1998, 45: 313-320.
Article
CAS
PubMed
Google Scholar
Shibata S, Natori Y, Nishihara T, Tomisaka K, Matsubara K, Sanawa H, Nguyen VC: Antioxidant and anticataract effect of Chlorella on rats with streptozotocin-induced diabetes. J Nutr Sci Vitaminol. 2003, 49: 334-339.
Article
CAS
PubMed
Google Scholar
Rodriguez-Lopez M, Lopez-Quijada C: Plasma glucose and plasma insulin in normal and alloxanized rats treated with Chlorella. Life Sci. 1971, 10: 57-68.
Article
CAS
Google Scholar
Lee HS, Choi CY, Cho C, Song Y: Attenuating effect of chlorella supplementation on oxidative stress and NF kappa B activation in peritoneal macrophages and liver of C57BL/6 mice fed on an atherogenic diet. BiosciBiotechnol Biochem. 2003, 67: 2083-2090.
Article
CAS
Google Scholar
Tanaka K, Yamada A, Nada K, Shoyama Y, Kubo C, Nomoto K: Oral administration of a unicellular green algae, Chlorella vulgaris, prevents stress-induced ulcer. Plant Med. 1997, 63: 465-466.
Article
CAS
Google Scholar
Tanaka K, Konishi F, Himeno K, Taniguchi K, Nomoto K: Augmentation of antitumor resistance by a strain of unicellular green algae, Chlorella vulgaris. Cancer Immunol Immunother. 1984, 17: 90-94.
Article
CAS
PubMed
Google Scholar
Konishi F, Tanaka K, Himeno K, Taniguchi K, Nomoto K: Antitumor effect induced by a hot water extract of Chlorella vulgaris (CE): resistance to Meth-A tumor growth mediated by CE-induced polymorphonuclear leukocytes. Cancer Immunol Immunother. 1985, 19: 73-78.
Article
CAS
PubMed
Google Scholar
Tanaka K, Tomita Y, Tsuruta M, et al: Oral administration of Chlorella vulgaris augments concomitant antitumor immunity. Immunopharmacol Immunotoxicol. 1990, 12: 277-21-
Article
Google Scholar
Tanaka K, Koga T, Konishi F: Augmentation of host defense by a unicellular green alga, Chlorella vulgaris, to Escherichia coli infection. Infect Immun. 1986, 53: 267-271.
CAS
PubMed
PubMed Central
Google Scholar
Hasegawa T, Tanaka K, Ueno K: Augmentation of the resistance against Escherichia coli by oral administration of a hot water extract of Chlorella vulgaris in rats. Int J Immunopharmacol. 1989, 11: 971-976.
Article
CAS
PubMed
Google Scholar
Hasegawa T, Okuda M, Nomoto K, Yoshikai Y: Augmentation of the resistance against Listeria monocytogenes by oral administration of a hot water extract of Chlorella vulgaris in mice. Immunopharmacol Immunotoxicol. 1994, 16: 191-202.
Article
CAS
PubMed
Google Scholar
Hasegawa T, Okuda M, Makino M, Hiromatsu K, Nomoto K, Yoshikai Y: Hot water extracts of Chlorella vulgaris reduce opportunistic infection with Listeria monocytogenes in C57BL/6 mice infected with LP-BM5 murine leukemia viruses. Int J Immunopharmacol. 1995, 17: 505-512.
Article
CAS
PubMed
Google Scholar
Ibusuki K, Minamishima Y: Effect of Chlorella vulgaris extracts on murine cytomegalovirus infections. Nat Immun Cell Growth Regul. 1990, 9: 121-128.
CAS
PubMed
Google Scholar
Hasegawa T, Ito K, Ueno S, et al: Oral administration of hot water extracts of Chlorella vulgaris reduces IgE production against milk casein in mice. Int J Immunopharmacol. 1999, 21: 311-323.
Article
CAS
PubMed
Google Scholar
Shim JS, Oh KW, Suh I, Kim MY, Shon CY, Lee EJ, Nam CM: A study on validity of a 299 semiquantitative food frequency questionnaire of Korean adults. Kor J Community Nutr. 2002, 7: 484-494.
Google Scholar
Christian JL, Greger JL: Nutrition for Living. 1994, Redwood City, CA: Benjamin/ Cummings, 111-
Google Scholar
The American Dietetic Association: Handbook of clinical dietetics. 1992, New Haven, CT: Yale University Press, 5-39. 2
Google Scholar
Nair MP, Kandaswami C, Mahajan S, et al: The flavonoid, quercetin, differentially regulates Th-1 (IFNgamma) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. BiochimBiophys Acta. 2002, 1593: 29-36.
CAS
Google Scholar
Hasegawa T, Kimura Y, Hiromatsu K, et al: Effect of hot water extract of Chlorella vulgaris on cytokine expression patterns in mice with murine acquired immunodeficiency syndrome after infection with Listeria monocytogenes. Immunopharmacology. 1997, 35: 273-282.
Article
CAS
PubMed
Google Scholar
Ewart HS, Bloch O, Girouard GS, et al: Stimulation of cytokine production in human peripheral blood mononuclear cells by an aqueous Chlorella extract. Planta Med. 2007, 73: 762-768.
Article
CAS
PubMed
Google Scholar
Cheng FC, Lin A, Feng JJ, Mizoguchi T, Takekoshi H, Kubota H, Kato Y, Naoki Y: Effects of Chlorella on Activities of Protein Tyrosine Phosphatases, Matrix Metalloproteinases, Caspases, Cytokine Release, B and T Cell Proliferations, and Phorbol Ester Receptor Binding. J Med Food. 2004, 7: 146-152.
Article
PubMed
Google Scholar
Hunter CA, Chizzonite R, Remington JS: IL-1 beta is required for IL-12 to induce production of IFN-gamma by NK cells. A role for IL-1 beta in the T cell-independent mechanism of resistance against intracellular pathogens. J Immunol. 1995, 155: 4347-4354.
CAS
PubMed
Google Scholar
Tominaga K, Yoshimoto T, Torigoe K, Kurimoto M, Matsui K, Hada T, Okamura H, Nakanishi K: IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells. Int Immunol. 2000, 12: 151-160.
Article
CAS
PubMed
Google Scholar
Ishikawa Y, Sugiyama H, Stylianou E, Kitamura M: Bioflavonoid quercetin inhibits interleukin-1-induced transcriptional expression of monocyte chemoattractant protein-1 in glomerular cells via suppression of nuclear factor-kappaB. J Am Soc Nephrol. 1999, 10: 2290-2296.
CAS
PubMed
Google Scholar
Dantas DC, Kaneno R, Queiroz ML: The effects of Chlorella vulgaris in the protection of mice infected with Listeria monocytogenes: Role of natural killer cells. Immunopharmacol Immunotoxicol. 1999, 21: 609-619.
Article
CAS
PubMed
Google Scholar
Brombacher F, Kopf M: Innate versus acquired immunity in listeriosis. Res Immunol. 1996, 147: 505-551.
Article
CAS
PubMed
Google Scholar
Teixeira HC, Kaufmann SHE: Role of NKl.1' cells in experimental listeriosis. NK1+ cells are early IFN-gamma producers but impair resistance to Listeria monocytogenes infection. J Immunol. 1994, 152: 1873-1882.
CAS
PubMed
Google Scholar
Dunn PL, North RJ: Early gamma interferon production by natural killer cells is important in defense against murine listeriosis. Infect Immunity. 1991, 59: 2892-2900.
CAS
Google Scholar
Bancroft GJ: The role of natural killer cells in innate resistance to infection. Curr OF Immunol. 1993, 5: 503-510.
Article
CAS
Google Scholar
Kaufmann SHE: Immunity to intracellular bacteria. Annu Rev Immunol. 1993, 11: 129-163.
Article
CAS
PubMed
Google Scholar
Denis M: Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates. Cell Immunol. 1991, 132: 150-157.
Article
CAS
PubMed
Google Scholar
Nathan CF, Murray HW, Wiebe MB, Rubin BY: Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983, 158: 670-689.
Article
CAS
PubMed
Google Scholar
Bancroft GJ, Schreiber RD, Bosma GC, Bosma MJ, Unanue ER: A T cell independent mechanism of macrophage activation by interferon gamma. J Immunol. 1987, 139: 1104-1107.
CAS
PubMed
Google Scholar
Bancroft GJ, Schreiber RD, Unanue ER: Natural immunity: A T-cell independent pathway of macrophage activation defined in the scid mouse. Immunol Rev. 1991, 124: 5-24.
Article
CAS
PubMed
Google Scholar