Skip to main content

Evaluation of antiaggregatory activity of flavonoid aglycone series



Among natural compounds, present in every day diet, flavonoids have shown beneficial effect in prevention of cardiovascular diseases that can be attributed, at least partially to the described antiaggregatory activity i.e. antiplatelet effects of flavonoids. Due to the ever increasing pharmacological interest in antiplatelet agents a systematic experimental evaluation of large flavonoid series is needed.


A set of thirty flavonoid aglycones has been selected for the evaluation. All measurements of aggregation were done under standardized and firmly controlled in vitro conditions. The whole blood samples, multiple platelet functional analyzer and adenosine diphosphate (ADP) as a weak agonist of aggregation were selected for this purpose.


The results were expressed as minimal concentration of flavonoid that can significantly lower the platelet aggregation compared to the corresponding untreated sample (minimal antiaggregatory concentration - MINaAC). All analyzed flavonoids exhibited antiaggregatory activity MINaAC ranging from 0.119 μM to 122 μM, while the most potent representatives were 3,6-dihydroxyflavone (0.119 μM) and syringetin (0.119 μM).


Measurable antiplatelet activity established at submicromolar flavonoid concentrations suggests that even a dietary consumption of some flavonoids can make an impact on in vivo aggregation of platelets. These findings also point out a therapeutical potential of some flavonoids.

Peer Review reports


In the developed countries most of the older population is affected by cardiovascular diseases. Platelets are involved in haemostasis, thrombosis and inflammatory processes, hence as a consequence of that physiological role heart stroke and cerebrovascular insult can occur. Most commonly used drug in prevention of mentioned diseases is acetylsalicylic acid while clopidogrel represents another therapeutic option. Neither of these drugs is free of side effects, thus the search for new and safer drug from this group continues [1]. From the natural compounds, present in every day diet, polyphenols, mainly flavonoids (Figure 1), have shown beneficial effect in prevention of cardiovascular diseases [27]. Flavonoids naturally occur in a free form (aglycones) or bound to a sugar moiety via hydroxyl groups (glycosides).

Figure 1
figure 1

Basic structure of flavonoids. Flavonoids are divided into classes based on the structure of ring C. Basic structure corresponds to flavan which are named flavanols (catechins) if hydroxylated at position C3. Flavanones have keto group on position C4. If the double bond C2 = C3 is present in structure flavanols and flavanones are named flavones and flavanonols, respectively. Isoflavonoids have B-ring at the position C3.

Flavonoid antiplatelet activity can be attributed to the increased production of prostacyclin by endothelian cells. Prostacyclin decreases aggregation via synthesis of cAMP - increased concentration of cAMP inhibits the expression of platelet GPIIb/IIIa receptors [6]. In vitro inhibition of cyclooxygenase, lipooxygenase, thyrosine kinase, phosphodiesterase or phospholipase by flavonoids has also been documented and connected to their antiplatelet activity [812]. Although different possible mechanisms have been analyzed a unique mechanism of antiaggregatory activity of flavonoids has not been undoubtedly proven yet.

There are also doubts about antiaggregatory effectiveness in vivo, due to high concentrations of flavonoids that have been used in experiments in vitro (10 - 1000 μM) that can not be reached in vivo after oral intake (0.6 μM) [13].

Most of the research on antiaggregatory effect of flavonoids has been done using Born spectrophotometric aggregometry. A major disadvantage of this method is usage of platelets rich plasma (PRP) instead of whole blood. Furthermore, most authors tested a range or even a single concentration of flavonoids, and often the series of tested flavonoids were small, thus limiting the overall interpretation of the results [9, 1418]. Finally, influence of biological variability has not been evaluated.

In this paper our objective was to analyse antiaggregatory effect of a relatively large set consisting of 30 flavonoid aglycons. Instead of Born method impedance aggregometry has been chosen as it enables usage of whole blood. This method reduces problems related to lack of standardization of PRP preparation and provides insight to possible interactions of flavonoids with blood components other than platelets. Biological triplicates of all experiments have been made on blood samples taken from three different blood donors. Along with the statistical evaluation of difference between treated and untreated samples this approach clearly minimizes chance effects caused by large biological variability.



A set of thirty flavonoids has been tested. Structures and the names of the suppliers are stated in the Table 1, Table 2, Table 3, Table 4 and Table 5. Clopidogrel, an ADP-receptor antagonist, was used as a positive control. This substance was a kind gift of HALMED, Croatia. All standards solutions were prepared by dissolving and semi-dissolution (1/2n) in dimethyl sulfoxide (DMSO, Sigma-Aldrich, Switzerland) in the concentration range of 500 mM to 30 nM depending of the flavonoid analyzed. Final concentration of DMSO in all experiments was 3%.

Table 1 Antiaggregatory activity of flavanons
Table 2 Antiaggregatory activity of flavones
Table 3 Antiaggregatory activity of flavanonols
Table 4 Antiaggregatory activity of isoflavones
Table 5 Antiaggregatory activity of positive control and catechin

ADP was obtained from Dynabyte, Germany, and saline-CaCl2 (0.003 M CaCl2 in 0.9% NaCl) from Croatian Institute of Transfusion Medicine, Croatia.

Freshly taken citrated blood (final citrate concentration 0.129 mol/L) was used for the measurement of aggregation each time from three different healthy volunteers per each flavonoid sample. This work was approved by Ethical comities of Croatian Institute of Transfusion Medicine and Faculty of Pharmacy and Biochemistry, University of Zagreb. A total number of 100 volunteers participated in this research. All volunteers gave informed written consent.

Experimental procedure

Platelet aggregation was analyzed by Multiplate® analyzer (Dynabyte, Germany). Generic procedure was used: 300 μL of blood was incubated for 6 minutes with 20 μL flavonoid solution and 300 μL of saline-CaCl2 preheated at 37°C. For negative control (untreated sample) 20 μL of solvent - DMSO was used (final concentration 3%). Aggregation cascade was induced by adding 20 μL of adenosine diphosphate reagent (ADPtest; final concentration of ADP 6.5 μM). Aggregation was measured for 6 minutes and expressed as area under curve in arbitrary units (AU).

Data analysis

The results of antiaggregatory effect of flavonoids were expressed as minimal antiaggregatory concentration (MINaAC) that presents the lowest concentration of flavonoid which can cause statistically significant reduction of aggregation when compared to the untreated sample. Procedure for determination of MINaAC is illustrated on Figure 2. Statistical analysis was performed using paired Student's t-test within R v2.8.1 environment (Austria). Normal distribution of aggregation on ten healthy volunteers was checked using Shapiro-Wilk test (p = 0.501) justifying the use of t-test.

Figure 2
figure 2

Design of the experiment. Aggregation of untreated sample (without adding the flavonoid, AUC 0) and the sample of flavonoid (AUC) are measured. If the difference of the aggregations is greater than 5% the measurement of additional two citrated bloods is performed. Otherwise, double concentration of flavonoid is taken and the first step is repeated. If the flavonoid in the analysed concentration shows statistically lower aggregation compared to the untreated sample (t-test) the analysed concentration is equal to minimal antiaggregatory concentration (MINaAC). If not analysis is performed from the beginning with double the concentration of flavonoid. This presumes that the analyzed concentration is not the first analysed (n > 1), else, the analysis is performed from beginning using the half of the concentration of flavonoid. Example of prunetin is given. Aggregation of analysed concentration of prunetin: 3.8 μM is not greater than aggregation of the untreated sample (58 U vs. 59 U). Thus additional measurement with double concentration (7.6 μM) of prunetin is performed. As the difference of aggregation is greater than 5% (ΔAUC = 17%) measurements on two additional citrated blood samples were performed. The concentration obtained is statistically different compared to the untreated sample (p = 0.033) thus minimal antiaggregatory concentration of prunetin is equal 7.6 μM. Note that red and blue lines in charts indicate two parallel measurements of the same sample. If the deviation between these two measurements is greater than 10%, quality control flag appears and measurements should be repeated.

Results and Discussion

All analyzed flavonoids exhibited antiaggregatory activity with MINaAC ranging from 119 nM to 122 μM.

Pinocembrine-7-methylether has lower MINaAC than pinocembrin, thus methylated derivates of flavanons have greater antiaggregatory effect. Most potent flavanones are p-O-methylated derivates at B-ring (Table 1).

Monohydroxylated flavones are most potent if substituted at the position 6 of the A-ring (6-hydroxyflavone, Table 2). However, most naturally occurring flavonoids are hydroxylated at position 7 (7-hydroxyflavone), thus having lower antiaggregatory effect. Increase in number of hydroxyl groups does not influence antiaggregatory effect (flavone, chrysin, apigenin). Methylation increases antiaggregatory effect, the same as it does in case of flavones (tectochrysin > chrysin). If the flavone has more than four substituents the activity decreases, even if methylated (diosmetin, luteolin, tangeretin).

Generally hydoxylated flavanons have greater antiaggregatory effect than flavones (pinocembrin > chrysin), opposite to methylated derivates (hesperetin > diosmetin, isosakuranetin > acacetin, pinocembrin-7-methylether = tectochrysin).

Comparing monohydroxylated flavanonols to monohydroxylated flavones antiaggregatory effect is higher (3,6-dihydroxyflavone > 6-hydroxyflavone, 3,7-dihydroxyflavone > 7-hydroxyflavone). As it is the case with flavones, increase in number of substituents (four and more) decreases, while methylation increases antiaggregatory effect (syringetin > rhamnetin > quercetin, Table 3).

Isoflavonoids are less potent antiaggregatory agents, but the same as for flavonoids applies: increase in hydroxylation decreases while methylation increases antiaggregatory effect (Table 4). This is probably due to greater volume and higher lipophilicity of the methyl radical (V = 37.15, π = -0.09) compared to hydroxyl group (V = 11.79, π = -0.74). Higher lipophilicity can lead to significant interactions with the platelet's membrane by increasing rigidity. The membrane is stabilized and the appearance of the receptors - integrins e.g. GPIIa/IIIb at the platelet surface is limited [1921].

Epicatechin, present in wine, was the only catechin analyzed (Table 5). It has greater antiaggregatory effect compared to flavone and flavanonol parallels, namely luteolin and quercetin.

Based on these observations, structure activity relationship between flavonoids (Figure 1) and antiaggregatory activity reveals that:

  • double bond at the position C2-C3 increases activity for hydroxylated derivates, but decreases activity for methylated derivates at the ring A and B,

  • hydroxyl group at the position C3 increases antiaggregatory activity,

  • transfer of B ring from C2 to C3 decreases activity (isoflavonoids),

  • absence of carbonyl group at the position C4 increases activity,

  • most potent flavonoids are substituted at the position C6 of the ring A,

  • O-methylation of the rings A and B increases activity,

  • if the rings A and B have 4 and more radicals activity decreases.

The results of antiaggregatory effect of flavonoids were compared to clopidogrel which acts as antagonist of ADP and serves as positive control in the experiment (Table 5). Although results for clopidogrel are comparable to results of the most potent flavonoids 3,6-dihydroxyflavone and syringetin, this should be interpreted with caution. Clopidogrel is a pro-drug whose metabolic activation to some extent can occur in vitro as main enzyme responsible for activation CYP2C19 is present in different tissues including the blood [22].

Dell'Agli et al. reported that inhibitory effect on platelet aggregation (induced by thrombin) of 10 μM concentration of individual compound followed the order: luteolin, quercetin and apigenin, the last being inactive [9]. In our study MINaAC followed the other arrangement: apigenin (3.815 μM), luteolin (7.629 μM), quercetin (15.259 μM), using ADP to induce aggregation.

Comparing the sets of flavonoids analyzed in our research to the work of Navarro-Nuñez et al. where antigreggatory effect was expressed as percentage of inhibition of SQ 29548 binding to thromboxane A2 (TxA2) receptor, apigenin was the most potent antagonist of aggregation [23]. Thus, it achieves antiaggregatory effect both through antagonism of thromboxane A2 receptors as well as ADP receptors. However, genistein was next potent antagonist of TxA2 receptors, contrary to our research where isoflavonoids showed lower antagonism to ADP receptors compared to other classes of flavonoids. Hesperetin has MINaAC of 1.907 μM, ten to thirty times lower than reported by Jin et al., as expected due to usage of strong agonists of aggregation (collagen, arachidonic acid) [17].

The daily consumption of flavonoids is reported to be m = 23 mg per day [24]. If we take into account that absorption of flavonoid aglycone is f = 24% (as reported for quercetin [25]) of the consumed dose it would mean that concentration which can be achieved with normal diet is:

where M represents average molar mass of flavonoid being 300 g/mol and V total blood volume of 5 L.

The most potent flavonoids cause minimal antiaggregatory effect in even lower concentrations: 3,6-dihyroxyflavone, syringetin (MINaAC = 0.119 μM), 6-hyroxyflavone, pinocembrin-7-methylether, tectochrysin, rhamnetin and isosakuranetin (MINaAC = 0.954 μM). These levels of flavonoids in serum have been experimentally confirmed for the most commonly consumed flavonoids: hesperetin and naringenin from orange juice, and epi/catechins from coco and green tea - ranging from 0.01 to 1.1 μM for individual flavonoid [2629]. This is contrary to findings of Janssen et al. that flavonoids are active in concentrations that can not be achieved in vivo [13].


This work provides insight in the antiaggregatory activity of a relatively large set of flavonoid aglycons measured by standardized impendance aggregometry in whole blood against ADP as an inductor. SAR of flavonoids shows that increase in the number of hydroxyl groups at the rings A and B, decreases activity. On the other hand, if O-methyl groups are introduced activity increases. This indicates that the size/volume and lipophilicity of the radical is important factor, which should be confirmed in further QSAR prediction studies.

The results obtained suggest that even a daily consumption of flavonoids can effect aggregation of platelets. As flavonoids are ubiquitous substances in plants, this work can serve as source of information for further assessment of food influence on antiaggregation/anticoagulation treatment.


  1. Sweetman S: Martindale: The Complete Drug Reference. 2011, London: Pharmaceutical Press

    Google Scholar 

  2. de Lange DW, Verhoef S, Gorter G, Kraaijenhagen RJ, van de Wiel A, Akkerman JW: Polyphenolic grape extract inhibits platelet activation through PECAM-1: an explanation for the French paradox. Alcohol Clin Exp Res. 2007, 31: 1308-1314. 10.1111/j.1530-0277.2007.00439.x.

    Article  CAS  PubMed  Google Scholar 

  3. Leifert WR, Abeywardena MY: Cardioprotective actions of grape polyphenols. Nutr Res. 2008, 28: 729-737. 10.1016/j.nutres.2008.08.007.

    Article  CAS  PubMed  Google Scholar 

  4. Sumpio BE, Cordova AC, Berke-Schlessel DW, Qin F, Chen QH: Green tea, the "Asian paradox," and cardiovascular disease. J Am Coll Surg. 2006, 202: 813-825. 10.1016/j.jamcollsurg.2006.01.018.

    Article  PubMed  Google Scholar 

  5. Medić-Šarić M, Rastija V, Bojić M, Maleš Ž: From functional food to medicinal product: systematic approach in analysis of polyphenolics from propolis and wine. Nutr J. 2009, 8: 33-10.1186/1475-2891-8-33.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Akhlaghi M, Bandy B: Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J Mol Cell Cardiol. 2009, 46: 309-317. 10.1016/j.yjmcc.2008.12.003.

    Article  CAS  PubMed  Google Scholar 

  7. Lill G, Voit S, Schrör K, Weber AA: Complex effects of different green tea catechins on human platelets. FEBS Lett. 2003, 546: 265-270. 10.1016/S0014-5793(03)00599-4.

    Article  CAS  PubMed  Google Scholar 

  8. Pignatelli P, Di Santo S, Buchetti B, Sanguigni V, Brunelli A, Violi F: Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C-dependent NADPH oxidase activation: effect on platelet recruitment. FASEB J. 2006, 20: 1082-1089. 10.1096/fj.05-5269com.

    Article  CAS  PubMed  Google Scholar 

  9. Dell'Agli M, Maschi O, Galli GV, Fagnani R, Dal Cero E, Caruso D, Bosisio E: Inhibition of platelet aggregation by olive oil phenols via cAMP-phosphodiesterase. Br J Nutr. 2008, 99: 945-951.

    Article  PubMed  Google Scholar 

  10. Freedman JE, Parker C, Li L, Perlman JA, Frei B, Ivanov V, Deak LR, Iafrati MD, Folts JD: Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation. 2001, 103: 2792-2798.

    Article  CAS  PubMed  Google Scholar 

  11. Guerrero JA, Lozano ML, Castillo J, Benavente-García O, Vicente V, Rivera J: Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J Thromb Haemost. 2005, 3: 369-376. 10.1111/j.1538-7836.2004.01099.x.

    Article  CAS  PubMed  Google Scholar 

  12. Nakahata N: Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther. 2008, 118: 18-35. 10.1016/j.pharmthera.2008.01.001.

    Article  CAS  PubMed  Google Scholar 

  13. Janssen K, Mensink RP, Cox FJ, Harryvan JL, Hovenier R, Hollman PC, Katan MB: Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr. 1998, 67: 255-262.

    CAS  PubMed  Google Scholar 

  14. Weng JR, Chan SC, Lu YH, Lin HC, Ko HH, Lin CN: Antiplatelet prenylflavonoids from Artocarpus communis. Phytochemistry. 2006, 67: 824-829. 10.1016/j.phytochem.2006.01.030.

    Article  CAS  PubMed  Google Scholar 

  15. Heptinstall S, May J, Fox S, Kwik-Uribe C, Zhao L: Cocoa flavanols and platelet and leukocyte function: recent in vitro and ex vivo studies in healthy adults. J Cardiovasc Pharmacol. 2006, 47 (Suppl 2): S197-205.

    Article  CAS  PubMed  Google Scholar 

  16. Hubbard GP, Wolffram S, Lovegrove JA, Gibbins JM: Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J Thromb Haemost. 2004, 2: 2138-2145. 10.1111/j.1538-7836.2004.01067.x.

    Article  CAS  PubMed  Google Scholar 

  17. Jin YR, Han XH, Zhang YH, Lee JJ, Lim Y, Chung JH, Yun YP: Antiplatelet activity of hesperetin, a bioflavonoid, is mainly mediated by inhibition of PLC-gamma2 phosphorylation and cyclooxygenase-1 activity. Atherosclerosis. 2007, 194: 144-152. 10.1016/j.atherosclerosis.2006.10.011.

    Article  CAS  PubMed  Google Scholar 

  18. Pignatelli P, Pulcinelli FM, Celestini A, Lenti L, Ghiselli A, Gazzaniga PP, Violi F: The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am J Clin Nutr. 2000, 72: 1150-1155.

    CAS  PubMed  Google Scholar 

  19. Furusawa M, Tsuchiya H, Nagayama M, Tanaka T, Nakaya K, Iinuma M: Anti-platelet and membrane-rigidifying flavonoids in brownish scale of onion. J Health Sci. 2003, 49: 475-480. 10.1248/jhs.49.475.

    Article  CAS  Google Scholar 

  20. Hendrich AB: Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol Sin. 2006, 27: 27-40. 10.1111/j.1745-7254.2006.00238.x.

    Article  CAS  PubMed  Google Scholar 

  21. O'Malley BA: Primary Hemostasis. Clinical Laboratory Hematology. Edited by: McKenzie SB, Williams JL. 2010, New York: Pearson, 612-638. 2

    Google Scholar 

  22. Božina N, Bradamante V, Lovrić M: Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arh Hig Rada Toksikol. 2009, 60: 217-242.

    PubMed  Google Scholar 

  23. Navarro-Núñez L, Castillo J, Lozano ML, Martínez C, Benavente-García O, Vicente V, Rivera J: Thromboxane A2 receptor antagonism by flavonoids: structure-activity relationships. J Agric Food Chem. 2009, 57: 1589-1594. 10.1021/jf803041k.

    Article  PubMed  Google Scholar 

  24. Hertog MG, Hollman PC, Katan MB, Kromhout D: Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer. 1993, 20: 21-29. 10.1080/01635589309514267.

    Article  CAS  PubMed  Google Scholar 

  25. Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB: Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr. 1995, 62: 1276-1282.

    CAS  PubMed  Google Scholar 

  26. Stalmach A, Mullen W, Steiling H, Williamson G, Lean ME, Crozier A: Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy. Mol Nutr Food Res. 2010, 54: 323-334. 10.1002/mnfr.200900194.

    Article  CAS  PubMed  Google Scholar 

  27. Gardana C, Guarnieri S, Riso P, Simonetti P, Porrini M: Flavanone plasma pharmacokinetics from blood orange juice in human subjects. Br J Nutr. 2007, 98: 165-172. 10.1017/S0007114507699358.

    Article  CAS  PubMed  Google Scholar 

  28. Bredsdorff L, Nielsen IL, Rasmussen SE, Cornett C, Barron D, Bouisset F, Offord E, Williamson G: Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from alpha-rhamnosidase-treated orange juice in human subjects. Br J Nutr. 2010, 103: 1602-1609. 10.1017/S0007114509993679.

    Article  CAS  PubMed  Google Scholar 

  29. Mullen W, Archeveque MA, Edwards CA, Matsumoto H, Crozier A: Bioavailability and metabolism of orange juice flavanones in humans: impact of a full-fat yogurt. J Agric Food Chem. 2008, 56: 11157-11164. 10.1021/jf801974v.

    Article  CAS  PubMed  Google Scholar 

Download references


This work was supported by the Ministry of Science, Education and Sports of the Republic of Croatia (project No. 006-0061117-1237 - MMŠ).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Marica Medić-Šarić.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MMŠ and ŽD contributed to experimental design. MB and MT carried out the experiments. MB, ŽD, MMŠ and ST contributed to the analysis of the data. MB was principally responsible for writing the paper with assistance from MMŠ and ŽD. All authors read and approved the final manuscript.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Authors’ original file for figure 2

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Bojić, M., Debeljak, Ž., Tomičić, M. et al. Evaluation of antiaggregatory activity of flavonoid aglycone series. Nutr J 10, 73 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: