Skip to main content

Table 2 Intakes of response variables and key foods across sex-specific tertiles (T) of dietary pattern (n = 2121)a

From: Association between diet quality, dietary patterns and cardiometabolic health in Australian adults: a cross-sectional study

Food groups Factor loading Tertile of dietary pattern P-trendb
T1 T2 T3
DP-1
 Response variables
  Fibre density, g/MJ 2.10 ± 0.04 2.75 ± 0.04 3.79 ± 0.06 < 0.001
  SFA: PUFA 3.55 ± 0.09 2.53 ± 0.06 1.99 ± 0.06 < 0.001
  Sugar, %E 20.7 ± 0.42 17.7 ± 0.33 18.7 ± 0.37 < 0.001
 Direct associations, g/d
  Pome fruit 0.23 51 ± 6 88 ± 11 161 ± 12 < 0.001
  Wholegrain bread 0.22 33 ± 5 45 ± 3 82 ± 4 < 0.001
  Wholegrain cereals 0.22 31 ± 4 39 ± 3 72 ± 5 < 0.001
  Nuts and seeds 0.22 9 ± 1 13 ± 1 29 ± 4 < 0.001
  Carrot and root vegetables 0.21 29 ± 3 32 ± 3 72 ± 8 < 0.001
 Inverse associations
  Fruit drinks − 0.24 547 ± 46 283 ± 40 158 ± 17 < 0.001
  Full fat milk − 0.24 447 ± 34 244 ± 20 189 ± 19 < 0.001
  Cream − 0.22 77 ± 8 33 ± 5 20 ± 3 < 0.001
  Chocolate −0.21 23 ± 2 8 ± 1 6 ± 1 < 0.001
  Non-wholegrain bread − 0.20 138 ± 9 108 ± 8 82 ± 6 < 0.001
DP-2
 Response variables
  Fibre density, g/MJ 2.52 ± 0.06 2.90 ± 0.05 3.21 ± 0.07 < 0.001
  SFA: PUFA 2.32 ± 0.07 2.70 ± 0.07 3.07 ± 0.08 < 0.001
  Sugar, %E 13.9 ± 0.28 18.5 ± 0.37 24.7 ± 0.30 < 0.001
 Direct associations, g/d
  Added sugars 0.31 24 ± 2 34 ± 3 53 ± 4 < 0.001
  Pome fruit 0.28 52 ± 6 83 ± 8 165 ± 11 < 0.001
  Tropical fruit 0.24 45 ± 4 70 ± 6 110 ± 8 < 0.001
  Other fruit 0.21 28 ± 3 50 ± 6 77 ± 9 < 0.001
  Stone fruit 0.20 18 ± 3 27 ± 4 86 ± 10 < 0.001
 Inverse associations, g/d
  Wines −0.30 281 ± 27 99 ± 13 60 ± 10 < 0.001
  Beers and ciders − 0.30 478 ± 54 187 ± 33 67 ± 13 < 0.001
  Non-wholegrain cereals − 0.19 284 ± 29 200 ± 23 135 ± 13 < 0.001
  Fish − 0.17 70 ± 8 39 ± 5 26 ± 3 < 0.001
  Fried vegetables − 0.15 28 ± 5 21 ± 6 14 ± 3 0.035
  1. aDP dietary pattern, SFA saturated fatty acid, PUFA poly-unsaturated fatty acid, %E percentage energy; Values represent mean ± SE after adjustment for survey weighting
  2. bLinear regression analyses tested for trends across tertiles of dietary pattern. Analyses were adjusted for age and sex