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Abstract

Natural killer (NK) cells as part of the innate immune system represent the first line of defence against (virus-)
infected and malignantly transformed cells. The emerging field of nutritional immunology focuses on compounds
featuring immune-modulating activities in particular on NK cells, which e.g. can be exploited for cancer prevention
and treatment. The plant-based nutrition resveratrol is a ternary hydroxylated stilbene, which is present in many
foods and beverages, respectively. In humans it comprises a large variety of distinct biological activities.
Interestingly, resveratrol strongly modulates the immune response including the activity of NK cells. This review
will give an overview on NK cell functions and summarize the resveratrol-mediated modulation thereof.
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Background
The innate immune system is conserved among verte-
brates and is already functionally present at birth. Cellu-
lar members of the human innate immune system are
different leukocytes such as monocytes, eosinophils,
neutrophils, basophils, dendritic cells, and natural killer
(NK) cells. Other non-cellular members of the innate
immune system are the complement system and a large
number of secreted cytokines as inflammatory response
to any given trigger. Thus the innate immune system
forms a complex and effective protective shield against
infections but also malignant transformation, and cancer,
respectively. Interestingly, several natural compounds
like resveratrol strongly influence the immune response
and e.g. modulate the activity of NK cells. Therefore, the
modulation of the innate immune system by nutrition-
derived compounds has an important and valuable im-
pact on health. Due to the strong link between nutrition
and cancer the field of nutritional immunology intensively
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present or even enriched in foods for cancer prevention
and treatment.

NK cells and immune response
NK cells were first identified in 1975 by their ability to lyse
cancer cells in vitro without prior immune sensitization
[1, 2] and comprise about 15 % of all circulating lympho-
cytes [3]. Their main importance lies in early host defence
against both allogenic and autologous cells after virus
infection [4], infection with bacteria or parasites, or against
malignantly transformed cells [5]. NK cell development
primarily occurs in the bone marrow (BM) environment:
they are derived from hematopoietic stem cells subse-
quently differentiating into common lymphoid progeni-
tors, which finally develop into NK/T progenitors, from
which NK cells are derived throughout life [6–8]. Their
lineage development is characterized by the sequential
acquisition of surface receptors and effector functions [9].
In addition to BM and blood, NK cells are also found in
peripheral tissues including liver, peritoneal cavity, and
placenta [10]. Human NK cells are broadly defined as
CD3− CD56+ (CD3: T-cell co-receptor; CD56: neural cell
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adhesion molecule (NCAM)) lymphocytes and are further
distinguished into CD56bright (~10 % of human NK cells)
and CD56dim (~90 % of human NK cells) NK cells.
CD56dim NK cells express high levels of Fcγ receptor III
(FcγRIII, CD16) mediating antibody-dependent cell-
mediated cytotoxicity (ADCC), and CD56bright NK cells
show less or no CD16 expression [11, 12]. To defeat their
targets NK cells are, after prior activation by cytokines,
capable of extravasation and infiltration into affected
tissues [13, 14]. Target cell killing is executed through
different mechanisms (Fig. 1). First, NK cells form so-
called immune synapses (dynamic interface formed
between a NK cell and a target cell). Second, NK cells re-
lease cytoplasmic granules, organelles containing proteins
like perforin (Prf1), the saposin-like family member granu-
lysin, and serin-proteases called granzymes like granzyme
B (GzmB) to cleave e.g. several pro-caspases, which then
are able to trigger apoptosis in the target cell [15, 16].
Furthermore, the expression of members of the tumour
necrosis factor (TNF)-family like FAS ligand (FASL), TNF,
and TNF-related apoptosis inducing ligand (TRAIL) are
able to induce tumour-cell apoptosis upon formation of
immune synapses. TRAIL can bind to several death recep-
tors (DR), two of which are agonistic (DR4 (TRAIL-R1)
and DR5 (TRAIL-R2)) and induce apoptosis, and two of
which are antagonistic (decoy receptor 1 (DcR1, TRAIL-
R3) and DcR2 (TRAIL-R4)) and cannot induce apoptosis.
Another possibility to take action against target cells is the
secretion of a number of effector cytokines such as
interferon-γ (IFN-γ), granulocyte-macrophage colony-
stimulating factor (GM-CSF), and interleukin (IL) like
IL-5, IL-10, or IL-13 after reaching distinct stages of
NK-cell differentiation (Fig. 1). In addition, NK cells
secrete a variety of chemokines including chemokine C-C
motif ligand 2 (CCL2, monocyte-chemoattractant protein
(MCP)-1), CCL3 (macrophage inflammatory protein
(MIP)-1α), CCL4 (MIP-1β), CCL5 (regulated upon activa-
tion, normal T-cell expressed and secreted (RANTES)),
chemokine X-C motif ligand 1 (XCL1, lymphotactin), and
chemokine C-X-C motif ligand 8 (CXCL8, IL-8) to
colocalize with other immune cells like dendritic cells in
areas of inflammation (Fig. 1) [17]. With a wide range of
pattern recognition receptors (PRRs), different types of
immune cells can specifically identify conserved pathogen-
associated molecular patterns (PAMPs), which are exclu-
sively present on microbes such as viruses, bacteria, para-
sites, and fungi. Members of the main PRR families are
transmembrane Toll-like receptors (TLRs), C-type lectin
receptors (CLRs), cytoplasmic nucleotide oligomerization
domain (NOD)-like receptors (NLRs), and RNA helicase
retinoic acid inducible gene I (RIG-I)-like receptors (RLRs).
Thus, an intracellular signalling can be activated that subse-
quently induces expression of genes involved in inflamma-
tory and/or immune response to recruit e.g. phagocytic
cells and effector molecules to the site of infection. NK cells
express different PRRs like TLRs, NLRs, and RLRs. They
directly respond to PAMPs in an appropriate environment
in the presence of cytokines like IL-2, IL-12, IL-15,
or IL-18. Thus, activated NK cells produce IFN-γ, GM-CSF,
or TNF-α, or release cytotoxic granules directed toward a
target cell. Whether a NK cell remains silent or executes
its killing capacity on malignant cells depends on the
dynamic balance of stimulation events of two main struc-
tural classes of NK cell surface receptors, the killer cell
immunoglobulin-like receptors (KIRs) and receptors of the
C-type lectin-like family, which inhibit and/or activate
signalling cascades (Fig. 1). Some of the human activating
receptors like different KIRs or natural cytotoxicity recep-
tors (NCRs) such as NKp30, NKp44, NKp46, and NKp80
transmit the activation signal via protein tyrosine kinase-
dependent pathways. Therefore, different transmembrane
adaptor proteins comprise one to three cytoplasmic immu-
noreceptor tyrosine-based activation motifs (ITAMs) con-
sisting of a consensus amino-acid sequence with tyrosines
and leucines [18]. After phosphorylation the ITAMs serve
as docking sites for other kinases to further pass the signal-
ling. Additional activating signals can also be mediated
through receptors, which are noncovalently associated with
other adaptor proteins, which contain no ITAM [19]. To
antagonize NK cell activation, inhibitory surface receptors
like different KIRs in humans are present, which act
through protein tyrosine phosphatase-dependent pathways
[20]. They harbour immunoreceptor tyrosine-based inhibi-
tory motifs (ITIMs) in their cytoplasmic domains, which
can recruit tyrosine phosphatases like Src-homology 2 do-
main (SH2)-containing SHP-1 or SHP-2. The equilibrium
of the phosphorylation status of several signalling molecules
which are targets for both members of the Syk-family of
protein tyrosine kinases zeta-chain-associated protein
kinase 70/SYC (ZAP70/SYC), SHP-1, SHP-2 protein phos-
phatases, and its shifting to the one side or the other is
therefore crucial for NK cell behaviour. Ligands for the
inhibitory receptors are polymorphic major histocompati-
bility complex (MHC) class I molecules. KIR receptors
bind groups of HLA-A, HLA-B, and HLA-C alleles, while
HLA-E is recognized by CD94-NKG2A.

Cancer and NK cell activities
Some cancer cells lack or downregulate one or several
MHC class I molecules and/or upregulate e.g. NKG2D
ligands (NKG2DL) like the stress-inducible surface
glycoproteins MHC class I-related chain A and B (MICA
and MICB), and therefore provide no or not enough in-
hibitory stimulation [13, 21–23]. This so-called ‘missing-
self ’ recognition enables NK cells to detect and destroy
transformed or allogenic cells while discriminating them
from normal host cells (Fig. 1) [24]. Unfortunately,
cancer patients frequently have functionally impaired



Fig. 1 NK cells execute multiple tasks in innate immunity, they are i) responsible for direct defence of the host organism by checking for and
eliminating stressed or transformed autologous cells with low MHC I levels, ii) execute ADCC in case of virus infected cells by binding IgG to FcγRIII
(CD16) receptor, or iii) eliminate microbes by recognition of conserved structures with different PRRs. On the other side NK cells influence maturation
and activation of other immune cells and e.g. can kill immature DCs or M0 and M2 macrophages and thus selectively let activated APCs present
antigens to T cells in a controlled manner. Activated T cells can also be killed by NK cell-mediated lysis. NK cells therefore directly manipulate the
adaptive immune response by influencing antigen presentation and quantity of other immune cells. Immune cross talk often implies bidirectional
activation, which leads, like activating signalling in direct host defence, to enhanced proliferation, cytokine production, and cytotoxicity by increased
expression of granzymes, perforin, and granulysin. Numerous cytokines can so be released by NK cells, primarily IFN-γ, TNF-α, and GM-CSF, but also
many ILs and various inflammatory chemokines, which attract and traffic e.g. T cells, DCs, monocytes, eosinophils, basophils, or neutrophils. ADCC,
antibody-dependent cell-mediated cytotoxicity; CCL, C-C motif ligand; CTL, cytotoxic T lymphocyte; CXCL, C-X-C motif ligand; DNAM-1, DNAX
accessory molecule-1; FASL, fragment apoptosis stimulating ligand; GM-CSF, granulocyte macrophage colony-stimulating factor; IFN, interferon; IL,
interleukin; MHC I, major histocompatibility complex I; MIP1, macrophage inflammatory protein 1; NK cells, natural killer cells; NKG2D, natural-killer
group 2, member D; NKp30/46, natural killer cell p30/46-related protein; NLR, nucleotide oligomerization domain (NOD)-like receptor; PAMP,
pathogen-associated molecular pattern; PRR, pattern recognition receptor; RLR, RNA helicase retinoic inducible gene I (RIG-I)-like receptor; TCR,
T cell receptor; TLR, Toll-like receptor; TNF, tumour necrosis factor; TRAIL, TNF-related apoptosis-inducing ligand; XCL, X-C motif ligand
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NK cells and therefore a hindered antitumour immune
response [25–27]. Therefore, the application of pharmaco-
logical compounds that enhance NK cell function and/or
restore immune surveillance is part of current antitumour
strategies and treatment regimes. Immunomodulatory
drugs like thalidomide and lenalidomide augment
cytotoxicity in multiple myeloma and increase the amount
of peripheral blood NK cells [28, 29]. Chemotherapeutics
like melphalan, etoposide, and doxorubicin, or the
proteasome inhibitor bortezomib trigger the upregulation
of activating ligands for the receptors NKG2D and
DNAX accessory molecule-1 (DNAM-1) on multiple
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myeloma cells, thus sensitizing them to NK cell-mediated
killing [30]. In line, bortezomib at low concentrations
inhibits proliferation in hepatocellular carcinoma with
simultaneously increased MICA/B expression [31]. Espe-
cially, a large number of cytokines such as IL-2, IL-10,
IL-12, IL-15, IL-18, IL-21, IL-23, and type I interferons
(IFN-α, IFN-β) are investigated for their modulation
potential towards NK cell activity [32]. IL-2 and IL-15 are
commonly needed to expand donor NK cells in vitro in
adoptive transfer therapy to stimulate proliferation in the
periphery [33]. This activation leads to high membrane-
bound TRAIL expression when compared to unstimulated
cells [34]. IL-2 is FDA approved for the treatment of meta-
static renal cancer and advanced malignant melanoma
[35]. Whereas long-term low-dose subcutaneous applica-
tion of IL-2 seems to be associated with a tolerable
side-effect profile, the systemic use of IL-2 in high doses
can result in severe side effects like vascular leak
syndrome (VLS) and other toxicities [36–38]. Of note,
several natural compounds strongly influence the immune
response and especially modulate the activity of NK cells
while concurrently displaying favourable toxicity profiles.
Resveratrol, daily administered to healthy volunteers in oral
doses up to 5 g for a period of 29 days, was shown to be
safe without serious adverse reactions, which was proved
by clinical, biochemical, or hematologic analyses [39].

Resveratrol a plant-based diet
The naturally occurring lipophilic plant polyphenol
resveratrol was first isolated in 1939 from the roots of
the white hellebore Veratrum grandiflorum O. Loes by
Takaoka [40]. Since then, resveratrol was extracted from
over 100 different plants, some of which serve as com-
mon human dietary sources like grapes (wine, grape
juice), peanuts, soy, hop, and berries like blueberries and
cranberries. Resveratrol belongs to the polyhydroxystil-
bene subclass of plant polyphenols and exists as two
isomers, cis-(Z) and trans-(E) (Fig. 2a and b). The styr-
ene double-bond can undergo isomerization during UV
irradiation from the trans- to the cis-form [41]. In the
naturally occurring glycoside piceid a glucose moiety is
linked to cis- or trans-resveratrol via a 3-O-β-D-glyco-
sidic bond, so that also two piceid isomers exist (Fig. 2c).
In plants resveratrol serves as a phytoalexin (plant anti-
biotic) produced in response to fungal infection, injury,
or UV irradiation [42–45], especially in grapevines, pines,
and legumes. Resveratrol gained public attention associ-
ated with the “French paradox”, a phrase describing the
fact that the mortality rate from coronary heart disease
(CHD) in France is lower than in the rest of Europe and
the USA despite a diet traditionally rich in saturated fats
and similar plasma cholesterol concentrations. Neverthe-
less, French mortality rates from CHD resemble more the
ratios of Japan or China [46–48]. Corresponding data was
acquired during the MONICA (Multinational MONItor-
ing of trends and determinants in CArdiovascular disease)
project organised by the World Health Organisation
(WHO) in the 1980s to monitor cardiovascular diseases
and to determine corresponding risk factors in 21
countries around the world. As possible explanation for
this finding the consumption of red wine in France with
its comparably high resveratrol content on a regular basis
was suggested [49]. In fact, France had the highest per
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capita annual wine consumption worldwide during the
period of data acquisition. Moreover, for resveratrol anti-
oxidant [50, 51], anti-inflammatory [52], neuroprotective
[53], antiproliferative [54, 55], and distinctive immuno-
modulatory properties were shown [56]. Further, multiple
examples for antitumoural effects of resveratrol are de-
scribed in literature and comprehensively summarized by
Han and colleagues for different tumour types [57]. Re-
cent publications describe e.g. a synergistic effect of res-
veratrol in combination with doxorubicin in vitro and
in vivo in the treatment of different breast cancer cell lines
(MCF-7 and MDA-MB-231) [58] or dose-dependent in-
duction of apoptosis in colon cancer cell lines like SW620
and HepG2 cells [59, 60].

Bioavailability, pharmacokinetics, and biological functions
of resveratrol
Resveratrol is absorbed by intestinal trans-epithelial diffu-
sion [61, 62]. In a clinical study by Walle et al. [63] at least
70 % of 14C - labelled resveratrol was taken up after oral ad-
ministration. Further pharmacokinetic analyses revealed the
highest resveratrol/metabolite levels 30 min after ingestion
[64] with free resveratrol being present only to a small ex-
tent (1.7–1.9 %). Resveratrol-3-O-sulfate, resveratrol-4′-O-
glucuronide, and resveratrol-3-O-glucuronide are the major
plasma metabolites, accounting for 2.4-up to 13-fold
greater Cmax values in plasma than free resveratrol [65]. Al-
most 50 % of resveratrol and its metabolites are bound to
plasma proteins like albumin and haemoglobin [66] as well
as low density lipoproteins (LDL) [67, 68]. About 40–98 %
of orally administered resveratrol is excreted into urine and
faeces within 24 h [69]. Resveratrol first gained greater at-
tention through its antioxidative activity against human
LDL described in 1993 by Frankel et al. [51], thereby
strengthening the “French paradox” hypothesis [46] via de-
creasing endothelial damage, which is pathophysiologically
associated with cardiovascular disease. However, the
antioxidant potential of resveratrol is less potent than that
of quercetin or epicatechin, respectively flavonoids, which
are more abundant in red wine than resveratrol [51]. Inhib-
ition of platelet aggregation and eicosanoid synthesis by
resveratrol due to decreased levels of thromboxane A2
(TxA2) via inhibition of cyclooxygenase-1 (COX1) was
reported [70, 71]. This inhibiting property of resveratrol on
cyclooxygenase activity plays a role in the production of
pro-inflammatory molecules. In this context resveratrol acts
as an anti-inflammatory molecule and was shown to reduce
acute and chemically induced oedema [72, 73], lipopolysac-
charide (LPS)-induced airway inflammation [74], and osteo-
arthritis [75]. Furthermore, resveratrol suppresses nuclear
factor κ-light-chain-enhancer of activated B cells (NFκB)-
activation [76–78], thus influencing gene transcription
regulating immune and inflammatory responses [79]. Since
1997 it is known that resveratrol also bears an anticancer
activity being active throughout the steps of tumour initi-
ation, promotion, and progression in vitro as well as
in vivo. Therefore, resveratrol was considered as a cancer
chemopreventive agent [72]. Resveratrol also activates sir-
tuin 1 [80], which is responsible e.g. for the regulation of
glucose and insulin production, fat metabolism and, not-
ably, prolonged cell survival through negative regulation of
the tumour suppressor p53 [81]. Moreover, resveratrol was
also described to prevent dysregulation of gap junctional
intercellular communication (GJIC) mediated by organic
peroxids and environmental toxicants [82, 83]. For cancer
but also other diseases alterations in the GJIC have been re-
ported and seem to play a crucial role during malignant
transformation and tumour promotion. Therefore, the pro-
tection of an impairment of the cellular GJIC adds another
interesting aspect to the anticancer function of resveratrol
[82, 83].

Resveratrol and its interplay with NK cells
Several studies demonstrated a direct influence of resvera-
trol on NK cells and their killing ability on different levels
(Fig. 3). Resveratrol exerts simultaneous effects on NK
cells and other immune cells like CD8+- and CD4+-T-cells
[84]. Falchetti and colleagues exposed peripheral blood
mononuclear cells (PBMCs) to different concentrations of
resveratrol for a period of 18 h. After removing resvera-
trol, NK cell killing capacity of the PBMCs was tested
against human immortalised myelogenous leukaemia
K562 cells. The authors showed an increase of NK cell
killing activity at low resveratrol concentrations ranging
from 0.33 μM to 5.48 μM, with maximum activity at
1.31 μM. However, a dose-related inhibition of lytic activ-
ity was observed at high resveratrol concentrations of
21.92 μM and 87.68 μM. This finding was confirmed by Li
and coworkers, who similarly demonstrated an inhibition
of viability and increased apoptosis of NK cells upon
incubation with high resveratrol concentrations (50 μM),
whereas low concentrations from 1.56 μM to 3.13 μM
resulted in upregulation of NKG2D and IFN-γ on mRNA
as well as protein levels and an increased NK cell killing
towards leukaemia K562 target cells (Fig. 3) [85]. These
results suggest a concentration-dependent biphasic effect
of resveratrol, which is explained by promoting cell apop-
tosis via caspase signalling pathway in high concentration
ranges. This is supported by significantly reduced late
apoptotic/necrotic cells after pretreatment with the
caspase inhibitor z-VAD-FMK. The latter study further
showed a higher cytotoxic susceptibility of human lym-
phoblastoid T cells (Jurkat cells) towards resveratrol when
compared to NK cells. This was further corroborated by
Lu and Chen, who reported a similar dose-dependent in-
crease of cytotoxic NK cell killing activity also against
tumour cell lines derived from solid tumours, e.g. HepG2
and A549 cells after pre-stimulation of immortalized NK



Fig. 3 Resveratrol modulates the NKG2D receptor/NKG2D-L system by increasing expression in NK cells and in transformed target cells. Enhanced
expression of NKG2D receptor and cytotoxins in NK cells together with upregulation of NKG2D ligands and DRs on target cell surface lead to
enhanced killing efficacy. NK cells use two different mechanisms to kill the targets: i) by cytotoxic granule exocytosis ii) by induction of death
receptor-mediated apoptosis. Increased IFN-γ production by resveratrol enhances TRAIL expression, which can facilitate apoptosis induction. Inhibitory
signalling is often too weak to prevent NK cell killing due to downregulated expression of MHC I proteins in virus-infected or malignantly transformed
cells. Further activating signals can provide NCR ligands of different origin. DR4/5, death receptor 4/5; MHC I, major histocompatibility complex I;
MICA/B, MHC class I-related chain A/B; NK cells, natural killer cells; NKG2D, natural-killer group 2, member D; NKp30/44, natural killer cell p30/44-related
protein; TRAIL, TNF-related apoptosis-inducing ligand; ULBP1-3, UL16 binding protein 1–3
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cells (NK-92 cells) with resveratrol at low concentrations
of 1.56, 6.25, and 12.5 μM. All effector to target ratios (1:1,
5:1, 10:1) showed similar effects with the highest enhance-
ment of killing activity after pretreatment with 12.5 μM
resveratrol for the 10:1 ratio [86]. The authors additionally
demonstrated a dose-dependent upregulation of perforin
expression and a dose-dependent phosphorylation of
ERK-1/2 and JNK in resveratrol-stimulated NK-92 cells.
ERK-1/2 and JNK have previously been shown to contrib-
ute to NKG2D-mediated cytotoxicity [87]. Using a murine
acute pneumonia model to evaluate the anti-infectious
properties of resveratrol, subsequently displayed an en-
hanced NK cell activity with an increased anticancer effect
[88]. In the latter study resveratrol was intragastrically ad-
ministered to rats for 3 days at 0.5 mg/kg body weight.
The rats were subsequently intratracheally inoculated with
Serratia marcescens, a common nosocomial pathogen,
and monitored for 24 h. The resveratrol-treated group
showed an increased alveolar macrophage (AM) infiltra-
tion, an elevated NK cell activity, and a decreased bacterial
burden in the lungs of the infected animals, with a de-
creased mortality. Interestingly, isolated spleen NK cells of
rats pretreated with resveratrol showed an enhanced kill-
ing efficacy against mouse 51Cr-labelled lymphoma YAC-1
target cells compared with spleen NK cells isolated from
control rats treated with saline. In addition to the above-
mentioned modes of action, resveratrol increases cell-
surface expression of NKG2D ligands on human promye-
loblastic leukaemia KG-1a cells, thus providing two com-
plementary mechanisms to strengthen cytokine-induced
killer cells (CIK, a mixed phenotype between T- and NK
cells) killing properties directly and indirectly [89].
Stimulation of KG-1a cells with 25 μM resveratrol for
24 h rendered KG-1a cells susceptible to CIK-mediated
cytolysis via an increase in cell-surface expression of
NKG2D ligands and receptor DR4, coupled with a down-
regulation of cell-surface expression of DcR1 in KG-1a
cells, and accompanied by activation of the TRAIL path-
way [89]. Resveratrol is further capable of sensitizing cells
of various cancer entities to TRAIL-induced apoptotic cell
death such as neuroblastoma, medulloblastoma, glioblast-
oma, melanoma, T-cell leukaemia, pancreatic-, breast-,
and colon cancer (Fig. 3) [90–92]. In this respect, resvera-
trol upregulates the agonistic receptors DR4 and DR5 in
androgen-insensitive human prostate carcinoma cells PC-
3 and DU-145 [93, 94], thus enhancing TRAIL sensitivity
and possibly facilitating NK cell-mediated killing. Like-
wise, enhancement of DR4 and DR5 surface expression on
TRAIL-resistant human prostate adenocarcinoma LNCaP
cells with no difference for DcR1/2 after treatment with
10 μM resveratrol for 48 h was reported. Further, a dose-
dependent activation of caspase-3 for resveratrol treat-
ment alone, and caspase-8 activation for combined treat-
ment with resveratrol and TRAIL was shown. For PC-3
prostate cancer cells similar results were obtained con-
cerning increase of receptor expression of DR4 and DR5
for resveratrol treatment with 10 μM and 20 μM for 48 h,
and caspase 3/8 activation for treatment with resveratrol
(0-30 μM) and in combination with TRAIL (25 nM).
Human 1205 LU metastatic melanoma cells show a
resveratrol-dependent enhanced sensitivity to TRAIL
through downregulation of the antiapoptotic proteins
cFLIP and Bcl-xL [95]. Resveratrol also significantly en-
hances CD95L expression on HL60 human leukaemia cells
and on T47D breast carcinoma cells after 24 h of treatment
[96], which in addition facilitates NK cells to trigger
signalling-dependent apoptosis. Nieswandt et al. showed a
connection of platelet aggregation and the susceptibility of
cancer cells to NK cell-mediated lysis [97]. In this respect,
mouse and human cancer cells can activate platelets and
their aggregation, which correlates with their metastatic
potential [98, 99]. Due to tumour cell-platelet aggregation,
circulating tumour cells (CTCs) can be coated by aggre-
gated platelets and thus escape the immune response,
which further facilitates metastasis. Interestingly, resveratrol
mediates a dose-dependent inhibition of platelet aggrega-
tion via reduction of integrin gpIIb/IIIa on the platelet
membrane, which acts as fibrinogen receptor involved in
clot formation through the formation of bridges between
platelets, and by reducing the production of TxA2, which
activates further platelets and thus increases aggregation,
through inhibition of COX1-dependent pathways [71]. In
the field of NK cells resveratrol could further possess thera-
peutic potential in defeating aggressive NK cell leukaemias
and lymphomas by inhibiting constitutively active signal
transducers and activators of transcription 3 (STAT3)
signalling, which was demonstrated in the work of Quoc
Trung and colleagues in 2013 [100].

Conclusion
Modulation of NK cell activity by nutrition-derived com-
pounds and the role of resveratrol
Historically, the impact of nutrition on immune function
first came to light in 1810 when thymic atrophy in mal-
nourished patients was described by J.F. Menkel [101].
Especially in the last decade, the field of nutritional im-
munology or immunonutrition has constantly been
growing and established many molecular connections
between dietary compounds and their influence on im-
mune cells. Some of the different NK cell modulating
compounds can occur in numerous plants with often
very variable content like quercetin [102]. Since up to
70 % of the body’s immunocytes and over 90 % of all Ig-
producing cells are located in the gut, which is therefore
considered as the largest immune organ, the influence of
nutrient compounds on human immunity by making
first contact with the receptors of the immune cells in
this area, is obvious [103, 104]. Moreover, the gut-
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associated lymphoid tissue (GALT), consisting of iso-
lated and aggregated lymphoid follicles, is exposed to
myriads of different food antigens and multiple micro-
organisms ingested with the daily diet. It is therefore
predestinated for immunomodulation by nutrients e.g.
through targeting PAMP receptors of innate immune
cells. Immune-modulating molecules can be endogenous
or exogenous, and share the ability to enhance or sup-
press immune responses. Many plant-derived secondary
metabolites like flavonoids exhibit stimulating properties
on NK cell activity. The flavonol quercetin enhances NK
cell killing activity towards YAC-1 target cells [105]. An-
other study described an increased susceptibility of leu-
kaemia K562, and gastric cancer SNU1 and SNU-C4
cells towards NK cell-mediated lysis through induced ex-
pression of different NKG2D ligands [106]. Myricetin
from red wine and other foods showed similar stimulat-
ing effects towards K562 cells [107]. In the latter study,
however, quercetin did not alter NK cell killing activity.
Moreover, amentoflavone treated mice showed enhanced
NK cell activity and ADCC. Furthermore, IL-2 and IFN-
γ production was increased [108]. There are also exam-
ples of natural compounds, which are non-supportive
for the immune system e.g. tangeritin, a flavone found in
tangerine and other citrus peels, significantly reducing
the number of lymphocytes in mice treated with 100 μM
tangeritin in the drinking water for 4 weeks [109]. In an-
other study, inhibitory effects of tangeritin on NK cell
proliferation and differentiation with an ED50 (i.e., dose
that is effective in half the cultures) between 1 μM and
10 μM, were observed [110]. In line with the immune-
modulating properties of nutrition-derived compounds
resveratrol has been described to affect NK cell function
directly and indirectly on different levels. Resveratrol
seems to enhance immune reactions e.g. via alteration of
the expression of activating cell surface receptors like
NKG2D on NK cells or via stimulation of the expression
of their corresponding ligands on malignant cells as
summarized in Fig. 3. This immune modulation is very
interesting in the context of the further molecular
properties of this natural compound. For resveratrol, a
histone deacetylase (HDAC) inhibitory function in dif-
ferent human hepatoblastoma cells towards the classical
HDACs (class I, II and IV) was detected. It was postu-
lated, that HDAC inhibition mediated a dose-dependent
reduction of cancer cell proliferation [111]. Interestingly,
one preclinical approach for the activation of the NK cell
population and a subsequent increased cancer cell killing
is upregulation of the expression of the excitatory
NKG2D ligands by HDAC inhibitors [23, 112]. In detail,
Armeanu and colleagues demonstrated an enhancement
of cell-surface expression of MICA/B in HepG2 and
Hep3B hepatoma cells with no alterations of ULBP1-3
levels upon stimulation with the HDAC inhibitor
valproic acid (VPA), which led to an enhanced NK cell-
mediated killing [23]. Contrariwise, pretreatment of NK
cells alone with classical HDAC inhibitors like VPA or
suberoylanilide hydroxamic acid (SAHA) at therapeutic
concentrations suppresses the cytolytic activity of NK
cells [113]. Resveratrol is probably one of the most fam-
ous natural food ingredients due to its suspected ability
to lower the incidence of coronary heart disease in
people consuming wine with a high resveratrol content
on a regular basis like in France, hence the name
“French paradox”. Nonetheless, despite the beneficial
properties, including antitumour activities of resveratrol,
an important aspect remains to be discussed. Most stud-
ies and experiments concerning the immune-stimulatory
activity of resveratrol were performed in vitro and
ex vivo, respectively with supraphysiological concentra-
tions. The content of resveratrol in different fruits, vege-
tables, and especially in processed foods as well as the
bioavailability has to be taken into account while evalu-
ating the biological activity of resveratrol. A study about
the absorption of wine-related polyphenols including
resveratrol in different matrices like wine, grape juice,
and vegetable juice revealed maximum serum peak
concentrations around 30 min after consumption with
maximal serum concentrations of only 10–40 nM after
consumption of 25 mg trans-resveratrol per 75 kg body
weight (dissolved in 100 ml beverage, resulting in a con-
centration of 1.095 mM), which is considerably lower
than the concentrations tested in vitro showing benefi-
cial effects [64]. Accordingly, therapeutically required
concentrations are not achievable without further dietary
supplementation, which argues against an exclusive role
of resveratrol in providing health-promoting properties
by regular wine consumption alone. Resveratrol content
of different French wines ranges from 0.6-6.8 mg/l (2.63-
29.79 μM) [114], which is between 416- and 37-fold less
than in the above mentioned absorption study. Taken to-
gether, resveratrol is a promising natural compound able
to stimulate immune responses including an increase of
the NK cell-mediated killing of (virus-) infected and ma-
lignantly transformed cells. Problems arise, however, in
reaching pharmacologically effective systemic plasma
concentrations, because of rapid phase II-metabolism
and renal elimination. Nonetheless, suitable dietary in-
take of resveratrol could provide beneficial health effects.
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