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Abstract
Background Healthy dietary patterns have been negatively associated with methylation-based measures of 
biological age, yet previous investigations have been unable to establish the relationship between them and 
biological aging assessed through blood chemistry-based clinical biomarkers. We sought to assess the associations of 
4 dietary metrics with 4 measures of biological age.

Methods Among 16,666 participants in NHANES 1999–2018, 4 dietary metrics [Dietary inflammatory index (DII), 
Dietary approaches to stop hypertension index (DASH), Alternate mediterranean diet score (aMED), and Healthy 
eating index-2015 (HEI-2015)] were calculated through the ‘dietaryindex’ R package. Twelve blood chemistry 
parameters were utilized to compute 4 indicators of biological age [homeostatic dysregulation (HD), allostatic load 
(AL), Klemera–Doubal method (KDM), and phenotypic age (PA)]. Binomial logistic regression models and restricted 
cubic spline (RCS) regression were employed to evaluate the associations.

Results All 4 dietary metrics were significantly associated with biological age acceleration or deceleration. In 
comparison to the lowest DII, the odds ratios (ORs) for accelerated HD, AL, KDM, and PA were 1.25 (1.08,1.45), 1.29 
(1.11,1.50), 1.34 (1.08,1.65), and 1.61 (1.39,1.87) for the highest. The multivariable-adjusted ORs of the highest quartile 
of DASH, aMED, and HEI-2015 were 0.85 (0.73,0.97), 0.88 (0.74,1.04), and 0.84 (0.74,0.96) for HD, 0.64 (0.54,0.75), 0.61 
(0.52,0.72), and 0.70 (0.59,0.82) for AL, 0.68 (0.54,0.85), 0.62 (0.50,0.76), and 0.71 (0.58,0.87) for KDM, and 0.50 (0.42,0.59), 
0.64 (0.54,0.76), and 0.51 (0.44,0.58) for PA when compared with the lowest level. The findings were validated by the 
best-fitting dose-response curves for the associations. Among participants consuming dietary supplements (Pinteraction 
< 0.05), the positive effects of a healthy dietary pattern on biological aging were more pronounced. Systemic immune 
inflammation index (SII) and atherogenic index of plasma (AIP) were identified as being involved in and mediating the 
associations.
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Background
Nutrition is a significant ecological stimulus associated 
with every aspect of health and lifespan [1]. Healthier 
food choices are associated with lowered risks of cancer 
[2], cardiovascular disease (CVD) [3], and death [4]. The 
intricate mechanisms that connect diet and disease are 
multifaceted and may be related to the process of aging, 
such as epigenetic modifications [5–7]. Additional inves-
tigation on the relationship between dietary intake and 
aging is imperative, which could potentially present novel 
outlooks on the association of nutrition with disease.

Various molecular and physiological markers of aging 
have been devised and explored in numerous species 
[8, 9]. The utilization of biological age as an indicator of 
disease risk and mortality is acknowledged to be more 
informative than chronological age [10, 11]. Biological 
age metrics developed based on age-related clinical indi-
cators have proven to be reliable predictors of longevity, 
mortality, age-related diseases, comorbidities, and physi-
cal function impairment [12, 13], such as HD [14], AL 
[15], KDM [16], and PA [17]. Individuals with a higher 
biological age would be more susceptible to disease and 
experience accelerated aging [18].

One issue with past studies that predominantly inves-
tigated the associations of age acceleration metrics with 
specific nutrients or food items is that focusing exclu-
sively on individual food components may disregard 
the broader beneficial effects of improving the over-
all diet [19, 20], since these constituents are consumed 
in combination and have interconnected associations 
[21, 22]. Although there are studies on dietary patterns 
and methylation-based measures of biological age [6], 
research centered on the biological age measures derived 
from age-related clinical parameters outcomes is scarce, 
potentially constraining the ability to compare and com-
prehensively analyze the findings regarding diet and 
aging, undermining the scientific validity of studies, and 
impeding a thorough comprehension of the impact of 
diet on aging.

We proposed that improved dietary quality, as deter-
mined by various recommended guidelines, would be 
associated with decreased age acceleration, which is 
intended as a prognosticator of mortality. Here, we evalu-
ated how different dietary indices (DII, DASH, aMED, 
and HEI-2015) were related to biological aging indicators 
(HD, KDM, PA, and AL) using data from the 1999–2018 
NHANES.

Methods
Study population
NHANES is an extensive, nationwide survey performed 
by the National Center for Health Statistics (NCHS) to 
capture an exact analysis of the health and nutritional 
state of Americans [23]. We utilized cross-sectional 
data from NHANES 1999–2018 that encompassed 
16,666 individuals who satisfied the following criteria: 
non-pregnant adults (n = 57,540), standard daily energy 
intake (800–4200  kcal/d for male and 500–3500  kcal/d 
for female) (n = 48,741) [24], possess all the components 
of biological ages (n = 35,367), and dietary score compo-
nents are complete (n = 16,666) (Fig. 1).

Assessment of dietary metrics
Dietary information was obtained through a 24-hour 
dietary recall for two days that were not consecutive and 
computed following the guidelines provided by the U.S. 
Department of Agriculture’s Food and Nutrient Database 
for Dietary Studies [25]. Using the standardized algo-
rithms for dietary index calculations, 4 dietary metrics 
(DII, DASH, aMED, and HEI-2015) were computed based 
on the dietary intake data. Access to the corresponding 
algorithms and R code for the package ‘dietaryindex’ was 
made available at https://github.com/jamesjiadazhan/
dietaryindex. Dietaryindex is a flexible and validated tool 
that enables standardized calculations of dietary indices 
in epidemiological and clinical studies [26]. The calcula-
tion process consists of two steps: initially determining 
the serving size for each food and nutrient category, and 
then computing individual dietary indexes. In develop-
ing the DII, forty-five components identified as having 
inflammatory properties were included (Supplementary 
Table 1) [27, 28]. After adding up the scores for each com-
ponent, the DII produces a single score, where a higher 
value suggests that the diet has a greater potential for 
inflammation. Comprising numerous foods and nutrients 
known to be connected to hypertension [29], the DASH 
eating plan recommends the consumption of fruits, vege-
tables, nuts/legumes/vegan protein, whole grains, low-fat 
dairy, and limiting the intake of sodium, red or processed 
meats, and sugar-sweetened drinks (Supplementary 
Table 2). The aMED encompasses 9 components associ-
ated with lower risks of chronic diseases [30, 31], includ-
ing fruits, vegetables, nuts, legumes, whole grains, fish, 
red and processed meat, the ratio of monounsaturated fat 
to saturated fat, and alcohol intake (Supplementary Table 

Conclusions Biological aging assessed through blood chemistry-based clinical biomarkers is negatively associated 
with diet quality. The anti-aging benefits of improving the diet may be due to its ability to reduce inflammation and 
lower blood lipids.
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3). The HEI-2015 serves as a summary measure of com-
pliance with the USDA 2015–2020 Dietary Guidelines for 
Americans [32], assessing the consumption of total fruits, 
whole fruits, total vegetables, greens and beans, total 
protein food, seafood and plant protein, whole grain, 
dairy, fatty acids, refined grain, sodium, added sugar, and 
saturated fat (Supplementary Table 4).

Assessment of biological ages
Using twelve clinical markers (Supplementary Tables 
5–8), HD, KDM, and PA were calculated. The algorithms 
were first calibrated utilizing NHANES 1988–1994 
(NHANES III) and originally described by Nakazato et 
al. [33], Klemera et al. [12], and Levine et al. [13], respec-
tively. The corresponding code was available through the 
R package “BioAge” at https://github.com/dayoonkwon/

Fig. 1 Step-by-step diagram depicting the methodology for participant selection
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BioAge. The Mahalanobis distance metric was used by 
HD to quantify the difference between an individual’s 
clinical measurements and the reference established 
from a young and healthy population [34]. Conducting 
regression analyses between particular biomarkers and 
chronological age in the reference population enabled 
the measurement of KDM [35]. Through the application 
of elastic-net Gompertz regression, PA was computed by 
analyzing a range of factors related to mortality risks [36]. 
AL captured the cumulative effects of chronic stress and 
life events, and its measurement involved examining the 
proportion of biomarker levels indicating an increased 
risk for disease [37]. In our research, we assigned the 
risk level by identifying individuals in the top quartile 
of the distribution for eleven of the twelve biomarkers. 
For albumin, those who fall into the lowest quartile were 
deemed at risk, as supported by prior research findings 
[15]. The AL, with values between 0 and 1, denoted the 
ratio of biomarkers identified as “at risk”.

Assessment of biological aging
To gauge disparities in biological aging, those whose 
KDM or PA exceeded their chronological age were 
regarded as experiencing accelerated aging [38]. Par-
ticipants with higher HD or AL, categorized into groups 
based on their medians, were deemed to undergo accel-
erated aging [18].

Assessment of mediation variables
Combining the levels of triglyceride (TG) and high-den-
sity lipoprotein cholesterol (HDL-C) [39], AIP was calcu-
lated by mathematically deriving it from lg[TG(mmol/L)/
HDL-C(mmol/L)] [40]. The SII, a novel inflammation 
index, was determined by dividing the multiplication of 
the platelet count and neutrophil count by the lympho-
cyte count [41].

Assessment of covariates
Information on age, sex, and race was obtained through 
a standardized questionnaire. Weight in kilograms 
divided by the square of height in meters yielded the cal-
culation of body mass index (BMI). Data on smoking, 
drinking, physical activity, education, annual household 
income, and dietary supplement usage were acquired 
through questionnaires specifically designed for each. 
Physical activity was assessed by determining the meta-
bolic equivalent scores for weekly recreational activities, 
and regular exercise was defined as engaging in a mini-
mum of 150  min of moderate to high-intensity physi-
cal activity per week [42]. Information on cancer, CVD, 
hypertension, and diabetes was collected through indi-
vidual interviews using a standardized medical condi-
tion questionnaire. The definition of chronic kidney 
disease involves estimated glomerular filtration rate 

(eGFR) < 60 mL/min/1.73m2 and albumin to creatinine 
ratio (ACR) ≥ 30 mg/g [43]. A missing indicator category 
has been used to code covariates with missing data in 
categorical variables (missing values: smoking n = 387, 
drinking n = 993, exercise n = 23, income n = 820, nutrient 
supplement use n = 6, self-reported cardiovascular dis-
eases n = 904, self-reported cancer n = 747, self-reported 
hypertension n = 21, self-reported diabetes n = 381, and 
chronic kidney disease n = 2,358).

Statistical analyses
Consultation of the NHANES analytic guidelines ensured 
proper consideration of sample weights, stratification, 
and clustering. For continuous variables, baseline char-
acteristics were displayed as means (95% CI), while for 
categorical variables, they were listed as percentages (n). 
Multivariate linear regression models were utilized to 
analyze the associations of different dietary indexes with 
SII or AIP and the relationships between SII or AIP and 
biological age indicators. Associations of DII, DASH, 
aMED, and HEI-2015 with biological age indicators were 
examined through binomial logistic regression mod-
els. The associations between different dietary indexes 
and biological age indicators were then modeled using 
RCS regression. The effects of mediation were evaluated 
using mediation analysis. Several analyses were con-
ducted according to the stratified variable: age (> 60/≤ 
60), sex (male/female), race (non-hispanic white/others), 
BMI (< 30/≥ 30), smoking (yes/no), drinking (yes/no), 
regular exercise (yes/no), education (above college/oth-
ers)), income (< $55,000/≥ $55,000), dietary supplements 
use (yes/no), and self-reported hypertension (yes/no). R 
4.1.1 was utilized to perform all the analyses. A signifi-
cance level of less than 0.05 was used to determine the 
statistical significance, employing a two-tailed P-value 
threshold.

Results
Baseline characteristics
The detailed characteristics of participants according to 
different dietary indexes were presented in Table  1 and 
Supplementary Tables 9–11. Participants with lower DII 
or higher DASH, aMED, and HEI-2015 were more likely 
to be older, non–drinkers, and regular exercisers; have 
higher education, annual household income, dietary sup-
plement usage, KDM, and PA; as well as lower BMI, SII, 
AIP, HD, and AL.

Associations of different dietary indexes with SII and AIP
Positive correlations were observed between DII and SII 
(β 48.28, 95% CI 30.09–66.47) and AIP (β 0.04, 95% CI 
0.02–0.06), whereas negative associations were found 
between DASH, aMED, HEI-2015 and SII and AIP 
(Supplementary Table 12). In comparison to the lowest 

https://github.com/dayoonkwon/BioAge
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quartiles, the beta estimates for SII concerning DASH, 
aMED, and HEI-2015 were − 52.84 (-69.95, -35.73), 
-48.86 (-68.15, -29.57), and − 46.49 (-62.97,1–30.00), 
respectively. There was a positive correlation between 
AIP and DASH − 0.04 (-0.06, -0.02), aMED − 0.05 (-0.07, 
-0.02), and HEI-2015 -0.05 (-0.08, -0.03) (Supplementary 
Tables 13–15).

Associations of SII and AIP with biological age indicators
In terms of SII, participants within the top quartile exhib-
ited a higher HD (β 0.09, 95% CI 0.05–0.13), AL (β 0.01, 
95% CI 0.00–0.02), KDM (β 2.36, 95% CI 1.92–2.81), and 
PA (β 3.95, 95% CI 3.69–4.21) (Supplementary Table 16). 
AIP also showed positive associations with HD (β 0.17, 
95% CI 0.12–0.21), AL (β 0.06, 95% CI 0.05–0.07), KDM 
(β 2.40, 95% CI 1.93–2.87), and PA (β 1.56, 95% CI 1.25–
1.86) (Supplementary Table 17).

Associations of different dietary indexes with biological 
age indicators
Consistent with expectations, different dietary indexes 
were meaningfully correlated with measures of biological 
age (Fig. 2, Supplementary Tables 18–21). In the case of 
DII, individuals in the top 25% displayed a greater pro-
pensity to possess higher HD (OR 1.25, 95% CI 1.08–
1.45), AL (OR 1.29, 95% CI 1.11–1.50), KDM (OR 1.34, 
95% CI 1.08–1.65), and PA (OR 1.61, 95% CI 1.39–1.87) 

(Supplementary Table 18). DASH demonstrated signifi-
cant associations with HD (OR 0.85, 95% CI 0.73–0.97), 
AL (OR 0.64, 95% CI 0.54–0.75), KDM (OR 0.68, 95% CI 
0.54–0.85), and PA (OR 0.50, 95% CI 0.42–0.59) (Supple-
mentary Table 19). HEI-2015 also indicated connections 
to HD (OR 0.84, 95% CI 0.74–0.96), AL (OR 0.70, 95% CI 
0.59–0.82), KDM (OR 0.71, 95% CI 0.58–0.87), and PA 
(OR 0.51, 95% CI 0.44–0.58) (Supplementary Table 20), 
whereas aMED displayed statistically significant patterns 
solely with AL (OR 0.61, 95% CI 0.52–0.72), KDM (OR 
0.62, 95% CI 0.50–0.76), and PA (OR 0.64, 95% CI 0.54–
0.76) (Supplementary Table 21).

Best-fitting dose-response curves of the associations 
between different dietary indexes and biological age 
indicators
As depicted in Fig.  3, DII exhibited both roughly linear 
and non-linear relationships with accelerated HD, AL, 
KDM, and PA (all Poverall < 0.001). With the exclusion of 
PA (Poverall < 0.001, Pnonlinearity < 0.031), DASH revealed 
linear connections with HD, AL, and KDM (all Poverall < 
0.001, all Pnonlinearity > 0.050). Similarly, aMED and HEI-
2015 showed monotonic linear associations with lower 
risks of higher HD, AL, KDM, and PA (all Poverall < 0.001, 
Pnonlinearity > 0.050).

Fig. 2 Associations of dietary metrics with accelerated HD, AL, KDM, and PA. The adjustments involved age, sex, ethnicity, year, BMI, smoking, exercise, 
education, income, nutrient supplement use, self-reported cancer, cardiovascular diseases, hypertension, diabetes, and chronic kidney disease. Models 
for DASH and HEI-2015 were additionally adjusted for drinking. Case/N, the number of case subjects/total. Q, quintile
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Mediation effects of SII and AIP on the associations 
between different dietary indexes and biological age 
indicators
Our results revealed significant associations between 
diverse dietary indexes and SII and AIP, as well as 
between SII and AIP with biological age indicators, 
prompting us to explore the mediation effects in-depth 
to uncover the underlying relationship (Fig.  4). The 
total effects of DII on HD (βTot = 0.08, P < 0.001), AL 
(βTot = 0.06, P < 0.001), KDM (βTot = 0.07, P < 0.001), and 
PA (βTot = 0.06, P < 0.001) were demonstrated. Quantita-
tive measures based on standardized regression coef-
ficients revealed the total effects of DASH on HD (βTot 
= -0.02, P < 0.01), AL (βTot = -0.05, P < 0.001), KDM (βTot 
= -0.13, P < 0.001), and PA (βTot = -0.16, P < 0.001). The 
total effects of aMED and HEI-2015 on HD (βTot = -0.03, 
P < 0.001 and βTot = < -0.01, P > 0.05), AL (βTot = -0.04, 
P < 0.001 and βTot = -0.03, P < 0.01), KDM (βTot = -0.08, 

P < 0.001 and βTot = -0.12, P < 0.001), and AL (βTot = -0.10, 
P < 0.001 and βTot = -0.14, P < 0.001) were assessed after 
controlling for the covariates in the comprehensive RCS 
regression model. The percentage contributions of the 
indirect effects of DII on HD, KDM, PA, and AL medi-
ated by SII and AIP were evaluated to be 5.28, 4.45, 
4.59, 6.33, 6.11, 3.58, 16.57, and 7.62%, respectively. The 
proportions of the total effects of DASH and aMED on 
HD (29.02, 23.49, 17.17, 35.37%), AL (9.87, 13.12, 8.9, 
29.20%), KDM (5.16, 2.85, 6.44, 9.04%), and PA (9.31, 
4.07, 10.33, 11.62%) were attributed to the indirect effects 
mediated by SII and AIP. SII and AIP-mediated indirect 
effects also accounted for the specific proportions of the 
total effects of HEI-2015 on AL (19.00, 36.31%), KDM 
(6.24, 4.98%), and PA (11.51, 7.34%).

Fig. 3 Smoothing curves between dietary metrics and accelerated HD, AL, KDM, and PA. Binomial logistic regression models and RCS were performed 
with adjusting for age, sex, ethnicity, year, BMI, smoking, exercise, education, income, nutrient supplement use, self-reported cancer, cardiovascular dis-
eases, hypertension, diabetes, and chronic kidney disease. Models for DASH and HEI-2015 were additionally adjusted for drinking. The solid black lines 
correspond to the central estimates, and the gray-shaded regions indicate the 95% confidence intervals
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Associations of different dietary indexes with biological 
age indicators stratified by the factors under consideration
When performing comprehensive stratified analyses 
based on the factors under consideration (Supplemen-
tary Tables 22–37), comparable significant associations 
were observed among participants consuming dietary 
supplements (Pinteraction < 0.05). The relationships were 
also found to be strengthened among drinkers, highly 
educated individuals, and participants with hypertension, 
although the lack of statistical significance (Pinteraction > 
0.05).

Discussion
During our relatively large, national cross-sectional 
research of the general Americans, we observed that 
dietary patterns showed significant associations with 4 
biological age metrics utilized as predictors of chronolog-
ical age, and displayed specific dose-response patterns. 
Exhibiting a higher dietary inflammatory potential was 
related to a minimum of a 25% elevated risk of larger HD, 
AL, KDM, and PA. Meanwhile, individuals exhibiting 
higher DASH, aMED, and HEI-2015 experienced at least 
a 12% reduced risk of accelerated HD, AL, and KDM, 
PA. The associations of diet quality with biological aging 
were partly mediated by SII and AIP, underscoring the 
vital importance of a moderate diet in anti-inflammatory 
and lipid-lowering. Stratified analyses indicated that the 

relationships differed according to dietary supplement 
use, primarily due to the lack of robustness in those who 
do not consume.

This research was centered around the associations of 
well-established dietary indices with biological age met-
rics developed based on age-related clinical indicators, 
which may deliver more comprehensive assessments and 
insights into how food intake and nutrient consumption 
are associated with biological aging [44]. After all, focus-
ing exclusively on individual food components may dis-
regard the broader beneficial effects of improving the 
overall diet since these constituents are consumed in 
combination and have interconnected associations [21, 
22]. Epigenetic clocks, relying on DNA methylation at 
specific locations, are developed to predict disease risk 
and death, and are utilized to determine the impact of 
various factors on biological aging [45, 46]. The extent 
of attrition on telomeres, DNA sequences situated at the 
termini of chromosomes that aid in preserving genome 
stability [47], can be employed to investigate the pro-
cesses that detrimentally affect health and lifespan, such 
as inflammation, oxidative stress, and dietary intake 
[48–50]. Biological age metrics developed based on age-
related clinical indicators, which are reliable predictors of 
longevity, mortality, and age-related diseases, have also 

Fig. 4 Effects mediated by SII and AIP on the relationships. The results were presented as standardized regression coefficients after adjusting for the 
covariates in the full model of binomial logistic regression. *P < 0.05, **P < 0.01, ***P < 0.001
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been used to assess potential factors associated with bio-
logical aging [12, 13].

Previous research examining the association between 
diet and biological aging has primarily centered on spe-
cific diets and nutrients, biological age indices derived 
from methylation, or telomere length [6, 51–57]. The 
consistent results of our study coincided with prior inves-
tigations employing one or multiple of the biological age 
markers examined in this research, which indicated that 
the intake of α-tocopherol, vitamin K, and caloric restric-
tion were related to decreased instances of accelerated 
aging [51–53]. The strongest relationships have been 
observed between higher quality diets (measured using 
DASH, HEI-2015, and aMED) and methylation-derived 
assessments of biological age (including Hannum Age-
Accel, Horvath AgeAccel, PhenoAgeAccel, and Grim-
AgeAccel), which reinforces the significant associations 
between diet quality and longevity [6, 54, 55]. In addi-
tion, multiple nutritional patterns and habits, like the 
Mediterranean diet, exhibit a significant correlation with 
extended leukocyte telomere length (LTL) [56, 57]. The 
consistent observations of our research were in line with 
prior investigations carried out among NHANES 2003–
2014, which indicated anti-inflammatory and antioxidant 
dietary intake was inversely associated with accelerated 
HD, PA, KDM, and AL [58].

Furthermore, another revelation from our study was 
the advantageous effects of healthier dietary patterns 
on SII and AIP, both of which were interconnected with 
the intricate aging mechanism. As a significant risk fac-
tor with the potential to accelerate and exacerbate aging 
besides chronological age, inflammation could induce 
cellular impairment and organ injury [59, 60]. Lipids in 
the bloodstream are indispensable for cellular metabo-
lism [61], and dyslipidemia is a recognized hazard for 
age-related diseases [61]. There are reports of research 
suggesting an association between dyslipidemia and its 
lipid markers, particularly HDL-C, and alterations in 
telomere length [61]. As an uncomplicated and work-
able approach, dietary adjustment could help to regulate 
inflammation and dyslipidemia [62, 63]. The relationship 
of a rational diet with the body’s reactivity to both inter-
nal and external changes implied possible health perks 
[62]. Based on our findings, it can be inferred that there 
exist mediation effects of SII and AIP on the associa-
tions of healthier dietary patterns with biological aging, 
highlighting the potential of a balanced diet as a preven-
tive strategy against aging via the modulation of inflam-
mation and blood lipids. Nevertheless, more research is 
needed to assess alternative mechanisms connecting a 
balanced diet to the deceleration of aging.

The stratified analyses that explored the potential 
modifying impacts of the factors generally considered to 
be crucial in examining health-related issues especially 

emphasized the decelerated PA, KDM and decreased 
HD, AL among participants using dietary supplements. 
In addition to dietary intervention, an expanding body of 
research has demonstrated the potential for nutritional 
supplements to be a viable intervention in a compre-
hensive health-promoting strategy [64], which may be 
composed of diverse components with immunomodula-
tory, antioxidant, and specific nutritional properties [65]. 
Dietary supplement utilization tends to be elevated in 
pregnant or lactating women, athletes, individuals with 
dietary limitations, individuals leading busy or highly 
stressed lifestyles, and individuals with specific medical 
conditions [66–68]. Our study findings suggest that indi-
viduals consuming dietary supplements were more prone 
to being older, having chronic kidney disease (CKD), 
cancer, CVD, diabetes, and exhibiting higher levels of 
HD, AL, KDM, PA, as well as certain age-related clini-
cal markers (Supplementary Tables 38–39). Therefore, it 
is plausible to assume that those with suboptimal health 
conditions can attain enhanced anti-aging benefits by 
incorporating dietary supplements into their regimen 
and complementing them with a higher-quality dietary 
intervention.

Moreover, besides inflammation and lipid regulation, 
there is still a great deal unelucidated about the biologi-
cal pathways through which various dietary patterns 
might be associated with the aging process. Even though 
aging may be affected by diabetes and CVD [69, 70], 
the fundamental connection between quality meals and 
decelerated aging remained unchanged even when con-
sidering these chronic conditions. Given that it is a com-
mon epigenetic modification, the pattern and degree of 
DNA methylation have been validated to be associated 
with cellular aging as well as age-related diseases [55]. 
The consumption of certain foods and specific nutrients 
can bring about changes in DNA methylation through 
modulation of enzyme activity or modification of sub-
strates and coenzymes [71], such as omega-3 polyunsatu-
rated fatty acids (PUFAs) [46], and vegetables [19]. The 
microbiome functions as a modulator of healthy aging 
by transducing environmental signals, conditioning host 
immunity and metabolism, and modifying the vulnerabil-
ity to age-related diseases [72]. Gut microbial communi-
ties exhibit specificity to their hosts, co-evolve alongside 
their hosts, and are shaped by dietary habits [73]. To be 
specific, a diverse range of dietary choices is associated 
with the stability of the microbiome [74], and meals that 
are low in fat and high in fiber can have a positive impact 
on the health of the gut microbiome by increasing the 
number of probiotic bacteria [75].

The primary features of our study were the substan-
tial sample size that accurately represented the popula-
tion across the United States, the application of multiple 
accelerated aging measures, and comprehensive data on 
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various covariates and clinical outcomes. Nevertheless, 
several notable constraints should be taken into account 
when interpreting our findings. Initially, this research 
was conducted in a cross-sectional manner, meaning 
that both diet and age acceleration were evaluated at the 
beginning of the study. Consequently, some misclassi-
fication was inevitable, and any modifications or persis-
tent dietary routines may not have been fully captured. 
Although the health benefits of higher-quality diets 
were widely recognized, there was evidence indicating 
that unhealthy conditions were associated with reduced 
compliance with healthy eating [76]. Constrained by the 
nature of cross-sectional studies, we could not ascertain 
causation from the observed findings. Considering the 
lack of comprehensive and detailed food component data 
from dietary supplements, we excluded this portion of 
the data from our calculations of various dietary indexes, 
potentially resulting in a certain difference between our 
estimates and the actual exposure of individuals. More-
over, when it comes to HD and AL, we stratified indi-
viduals with an increased vulnerability to homeostatic 
disorder or health strain using the median as a cutoff, 
potentially influencing the precision of age-related risk 
assessment through the absence of information. Lastly, 
despite our exploration of various eating patterns, we 
encountered consistent associations of different dietary 
indexes with biological age indicators, complicating the 
determination of the superiority of particular dietary 
patterns.

Conclusions
Findings derived from our relatively sizable, country-
wide, cross-sectional study demonstrated the associa-
tions of healthier eating patterns with the deceleration 
of biological aging, with SII and AIP serving as mediat-
ing factors. Notably, this relationship appeared to be 
more pronounced among individuals who incorporated 
dietary supplements into their routines. Future research 
is imperative to confirm our findings, including research 
with larger cohorts, research encompassing individu-
als from diverse racial and ethnic backgrounds, inves-
tigations into the biological mechanisms involved, and 
examinations of the causal relationship between dietary 
factors and biological aging.
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