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Abstract
Background Low-quality, non-diverse diet is a main risk factor for premature death. Accurate measurement of 
habitual diet is challenging and there is a need for validated objective methods. Blood metabolite patterns reflect 
direct or enzymatically diet-induced metabolites. Here, we aimed to evaluate associations between blood metabolite 
patterns and a priori and data-driven food intake patterns.

Methods 1, 895 participants in the Northern Sweden Health and Disease Study, a population-based prospective 
cohort study, were included. Fasting plasma samples were analyzed with 1H Nuclear Magnetic Resonance. Food 
intake data from a 64-item validated food frequency questionnaire were summarized into a priori Healthy Diet Score 
(HDS), relative Mediterranean Diet Score (rMDS) and a set of plant-based diet indices (PDI) as well as data driven 
clusters from latent class analyses (LCA). Orthogonal projections to latent structures (OPLS) were used to explore 
clustering patterns of metabolites and their relation to reported dietary intake patterns.

Results Age, sex, body mass index, education and year of study participation had significant influence on OPLS 
metabolite models. OPLS models for healthful PDI and LCA-clusters were not significant, whereas for HDS, rMDS, PDI 
and unhealthful PDI significant models were obtained (CV-ANOVA p < 0.001). Still, model statistics were weak and the 
ability of the models to correctly classify participants into highest and lowest quartiles of rMDS, PDI and unhealthful 
PDI was poor (50%/78%, 42%/75% and 59%/70%, respectively).

Conclusion Associations between blood metabolite patterns and a priori as well as data-driven food intake patterns 
were poor. NMR metabolomics may not be sufficiently sensitive to small metabolites that distinguish between 
complex dietary intake patterns, like lipids.
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Introduction
In the latest update of The Global Burden of Disease proj-
ect from 2020 [1]; low-quality, non-diverse diet was the 
second (women) or third (men) leading risk factor for 
premature death. Suboptimal diet is characterized by 
high intakes of red and processed meat, trans fatty acids 
and sodium, and low intakes of fruit, vegetables, legumes, 
whole grains, and nuts and seeds. Unfortunately, the chal-
lenge of measuring dietary exposure accurately in free-
living individuals remains a limiting step in diet research. 
Commonly used self-reported methods are all associated 
with known limitations including misreporting, recall 
bias and difficulty in assessment of total exposure. Also, 
variation in individual metabolism due to genetics or the 
gut microbiome adds complexity to biomarker measure-
ments [2]. Unfortunately, validated objective measure-
ments of overall dietary patterns are few. Consequently, 
providing accurate and reliable measurements of habitual 
dietary exposure on large groups of individuals today 
constitutes one of the most urgent problems in nutrition 
research [3].

Metabolomics, which is at the downstream end of the 
post-genomic events, reflects the end products of the 
genetic, epigenetic and environmental stimuli and their 
interactions [4]. Thus, the metabolome constitutes a sen-
sitive and precise measure of an organism’s phenotype 
at a particular time of her/his life. Not surprisingly, the 
application of metabolomics to nutrition research has 
expanded rapidly. Still, only a limited number of pub-
lications identify metabolite patterns that reflect over-
all dietary patterns and habitual diets or demonstrate 
true ability of biomarkers to determine intake and thus 
to allow classification of people into dietary patterns 
[5–9]. A persistent challenge is the successful valida-
tion and quantification of biomarkers for intakes of pro-
posed dietary patterns [10]. The aim of the current study 
was to evaluate associations between patterns identified 
by untargeted metabolomics and by self-reported food 
intake data from a validated food frequency question-
naire on a sample of participants in a population-based 
cohort.

Methods
Study design and study participants
The Northern Sweden Health and Disease Study, 
NSHDS, is a biobank with questionnaire data and blood 
samples from several population-based cohort studies 
in northern Sweden. The largest cohort is the Västerbot-
ten Intervention Programme, VIP, which started in 1984. 
The program includes an invitation of all inhabitants in 
the county of Västerbotten to their regular health care 
center the year they turn 40, 50 or 60 years of age. For a 
few years, also 30-years old subjects were invited. Annual 
participation rate up until today has varied between 50 

and 80% of the eligible population. To date, about 60% of 
the adult population of Västerbotten have participated 
at least once and an earlier evaluation concluded that 
there are no indications of systematic bias with respect to 
socio-demographic characteristics between participants 
and non-participants [11].

During the health visit, participants complete a ques-
tionnaire on lifestyle factors, donate blood samples for 
research and clinical measurements are collected. Ques-
tionnaire data and blood samples are kept by the Unit 
for Biobank Research, Umeå, Sweden (EBF, https://www.
umu.se/en/biobank-research-unit/). VIP is described in 
detail in Norberg et al. [12].

For the current project, a subsample of 2,000 women 
and men were selected for detailed evaluation with 
Nuclear Magnetic Resonance (NMR) untargeted metab-
olomics. The time window was restricted to the years 
2000–2016, because previous research [13] had indicated 
changes in dietary patterns over time and hence earlier 
years were excluded. Among visits made by women and 
men aged > 30 and ≤ 65 years, only those with stored 
unthawed blood samples and complete questionnaire 
information on diet, body mass index, smoking and edu-
cation were considered for sample selection. From this 
pool, a stratified random sample of 1,000 unique women 
and 1,000 unique men balanced by 10-year age strata was 
drawn. Metabolomics analyses were incomplete for five 
individuals and thus 1,995 individuals were available for 
further analyses. Outliers with respect to BMI (< 19.0 
and > 35.0 kg/m2) and fasting plasma glucose levels (> 8.0 
mmol/l) exerted strong impact on metabolomics models. 
Hence, these individuals were removed and the sample 
size for the final analyses was 1,895 with participation in 
VIP between the years 2000–2016.

Metabolomics analyses
Fasting blood samples were stored at -80  °C until anal-
ysis, and prepared according to In Vitro Diagnostics 
Research (IVDr; Bruker BioSpin, Rheinstetten, Germany) 
standard operating procedures [14]. Daily quality assur-
ance included ensuring that sample temperature (calibra-
tion on 99.8% methanol-d4), shimming quality and water 
suppression (2mM sucrose sample in 10% D2O) and 
quantification reference (certified sample containing five 
metabolites of known concentration) were within specifi-
cations. Prior to 1H NMR analyses, previously unthawed 
plasma samples were thawed for 30 min at room temper-
ature and thereafter centrifuged at 3,500x g for 1 min at 
4 °C. Next, 100 µL plasma was mixed with 100 µL NMR 
buffer (75 mM Na2HPO4, 20% v/v D2O, 0.08% TSP-d4, 
0.04% NaN3, pH 7.4) in a deep well plate (Porvair, cat 
no 53.219030), with the aid of a SamplePro Tube L liq-
uid handler (Bruker BioSpin). The plate was shaken at 
400 r/min at 12 °C for 5 min in a Thermomixer Comfort 
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(Eppendorf ). Then, an 180 µL aliquote was transferred to 
3 mm SampleJet NMR tubes using the SamplePro L; all 
sample tubes, the deep well plate and the SampleJet rack 
were kept at 2 °C until analyses.

All 1H NMR spectra were measured on a Bruker 
600  MHz Avance III HD spectrometer equipped with a 
room temperature 5 mm BBI probe and a cooled (6  °C) 
SampleJet automatic sample changer for sample han-
dling. Here, 1D NOESY (´noesygppr1d´pulse sequence) 
was used for peak selection and metabolite quantification 
and 1D CPMG (´cpmgpr1d´) and 2D J-resolved (´jresgp-
prqf´) spectra, obtained according to the standard IVDr 
parameter settings at 310 K, were used for manual identi-
fication of peaks. TSP-d4 was used for referencing.

Sodium phosphate (Na2HPO4) and sodium azide 
(NaN3) were bought from SigmaAldrich, deuterium 
oxide (D2O) from CortecNet, and 3-(trimethylsilyl) 
propionic-2,2,3,3-d4 acid sodium salt (TSP-d4) from Mer-
ckMillipore. Data were aligned and peaks were selected 
by R using ’speaq 2´ [15]. Poor water suppression in 
several samples influenced the spectra around 4.7 ppm; 
therefore spectra between 4.2 and 5.2 ppm were not 
included in the current analyses. However, this did not 
influence the model quality in any material way. In total 
230 peaks between chemical shifts − 0.236–8.096 ppm 
were included. Annotation of discriminating metabo-
lites selected from the multivariate models was done by 
Chenomx NMR suite 8.31 (Chenomx Inc.) with the aid of 
the Human Metabolome Database [16] and an in-house 
implementation of the STOCSY routine [17].

Dietary assessment
Participants in VIP filled in a semi-quantitative food fre-
quency questionnaire (FFQ) that consists of 64 questions 
on common food items and dishes and reflects habitual 
intake during the last year. Portion sizes were indicated 
on four pictures with varying portion sizes for meat/
fish, staple food and vegetables. Frequency of intake of 
the food items was indicated on a nine-grade scale from 
never to ≥ 4 times/day. Frequency of intake was con-
verted to grams per day using the indicated portion sizes 
as well as natural sizes (e.g., fruit) or either age or gender-
specific portion sizes. Daily energy and nutrient intakes 
were calculated by linking the food intake data to the 
national food composition database at the Swedish Food 
Agency (https://soknaringsinnehall.livsmedelsverket.se/). 
All dietary data in NSHDS are curated as Northern Swe-
den Diet Database, NSDD.

Originally an 84-item FFQ was designed. This version 
was validated against ten repeated 24-hour recalls and 
plasma β-carotene in 246 study participants [18]. Partici-
pants also repeated the FFQ twice, one year apart. The 
results indicated good correlations in energy and nutri-
ent intake between the two occasions and the FFQ was 

deemed to be of similar quality as that of other prospec-
tive cohort studies using FFQ as a method to measure 
food intake [19]. Further, reported intake of several fatty 
acids has been validated against 24-hour recalls and fatty 
acid profile of erythrocyte membranes [20], and reported 
intake of phytosterols [21]. Later, several similar food 
groups were collapsed into larger groups, resulting in a 
64-item FFQ. This version has been validated against bio-
markers for reported intake of B vitamins [22].

For the current analyses, only individuals with reported 
dietary intake of acceptable quality were included. Inclu-
sions were based on having < 10% missing answers on the 
FFQ, and food intake level (reported energy intake/calcu-
lated basal metabolic rate) within 1–99% of the range for 
each sex in the entire VIP cohort.

Construction of a priori and data-driven diet scores and 
indices
Diet intake patterns have been described for all par-
ticipants in NSDD previously, using a priori scores and 
indices as well as a posteriori data-driven clustering, and 
these were used in the present analyses. A Healthy Diet 
Score (HDS) was calculated as previously described [23]. 
The score is based on intake of eight food and beverage 
groups. Favorable groups include fish, fruit (except juice), 
vegetables (except potatoes) and whole grain. Unfavor-
able groups include red and processed meat, desserts and 
sweets, sugar-sweetened beverages and fried potatoes. 
Within each sex, intakes are ranked in ascending quar-
tile ranks for favorable groups and in descending quar-
tile ranks for unfavorable groups. The sum of the quartile 
ranks yields the score, with a maximum of 24 and higher 
scores reflecting a healthier diet.

A relative Mediterranean Diet Score (rMDS) was cal-
culated as described by Buckland et al. [24]. The score 
indicates adherence to a Mediterranean style diet and is 
based on intake of nine components. Tertiles of intake, 
expressed as g*1000/kcal*day, were calculated for vege-
tables excluding potatoes; fruit including nuts and seeds; 
legumes, fresh and frozen fish excluding fish products 
and preserved fish, olive oil and cereals. The tertiles were 
assigned values of 0–2. For total meat and dairy prod-
ucts, similar tertiles were constructed and the scoring 
was reversed to account for a putative negative effect on 
health. Alcohol was scored 2 for moderate consumption 
and 0 for consumption outside of this range. The final 
score had a maximum of 9, indicating high adherence to 
a healthy Mediterranean-style diet.

A plant-based diet index, PDI, was developed as 
described by Satija et al. [25]. Foods were combined into 
15 homogeneous groups (healthful plant foods: whole 
grains, fruits, vegetables, legumes, vegetable oils, cof-
fee/tea; unhealthful plant foods: sweetened beverages, 
refined grains, potato, sweets/desserts; and animal foods: 
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animal fat, dairy, fish/seafood, poultry/red meat, and 
miscellaneous animal-based foods). Within each sex, 
quintiles of frequency of intake/day were constructed. 
For PDI, participants were assigned 5 points if they were 
above their fifth quintile of intake of any plant food, 4 
points if between the fifth and fourth quintile of intake 
and so forth down to 1 point if below the first quintile of 
intake. For animal foods the reverse scoring was used, 
i.e., participants were assigned 1 point if above their fifth 
quintile of intake etc. Points for all 15 food groups were 
summarized to the PDI. Further, a healthful plant diet 
index was constructed, hPDI. Here, only healthful plant 
foods were included in the positive ranking (i.e., 5 points 
if above highest quintile etc.) whereas both unhealthful 
plant foods and animal foods were included in the reverse 
ranking (i.e., 1 point if above the highest quintile, etc.). 
Lastly, an unhealthful plant diet index was constructed, 
uPDI. Here, unhealthful plant foods were included in the 
positive ranking whereas healthful plant foods and ani-
mal foods were included in the reverse ranking. For all 
three indices, minimum and maximum values ranged 15 
and 75.

Finally, latent class analyses have been applied to NSDD 
to identify distinct, mutually exclusive latent clusters of 
habitual diet [13]. Female and male NSDD participants 
between 2000 and 2007 and 2008–2016 were modelled 
separately. The reason for the two time periods was indi-
cations that dietary intake patterns had changed in Swe-
den over the years and hence homogeneous patterns 
over the entire time span were not expected. In the LCA 
analyses, individuals are predicted to mutually exclusive 
groups where within-class variance is minimized and 
between-class variance is maximized. Reported intake 
per 1,000 kcal of 40 food groups was used as input data. 
For all four subgroups, four clusters of food consump-
tion were identified as the optimal class solution based 
on the Bayesian information criteria (BIC), the LL sta-
tistics, class size and pattern interpretability. These clus-
ters captured variations in intake of healthy foods such 
as fruit and vegetables, high-fiber bread and low-fat 
milk, and less healthy foods such as high-fat dairy, white 
bread, sugar, jam and cookies. Clusters from Period 1 
(years 2000–2007) have been used in the present analyses 
because too few participants of the current sample were 
represented in Period 2 for analyses to be meaningful. 
Broad description of categorizations as well as intake pat-
terns for the indices, scores and clusters are presented in 
Supplementary Tables S1 and S2.

Assessment of non-dietary variables
Anthropometric and socio-demographic data were col-
lected at the participants’ nearest health care center [12]. 
Height in cm and weight in kg were measured in light 
clothing, without shoes. Body mass index (BMI) was 

calculated as weight in kg/height in m2. Basal metabolic 
rate was estimated according to the Schofield equation 
[26]. Physical activity was measured by combining two 
questions about occupational and leisure time physical 
activity into the validated Cambridge Index of Physical 
Activity [27]. Participants were categorized into inactive, 
moderately inactive, moderately active and active. Infor-
mation on smoking was categorized into current smoker; 
former smoker; and never smoker. Educational level was 
categorized as basic level of 9 years of schooling; high 
school; and university.

A 5-minute rest preceded the measurements of systolic 
and diastolic blood pressures. Blood glucose levels were 
evaluated with the use of a benchtop analyzer after at 
least 4  h of fasting. Serum cholesterol and triglycerides 
had been analyzed in a Reflotron benchtop analyzer at 
the health care centers (in the earlier years) or using an 
enzymatic routine method at the nearest hospital (from 
September 1st 2009). Details of the methods are found in 
Norberg et al. 2010 [12].

Statistical analyses
Descriptive results for the study sample are presented 
using mean and standard deviations or medians and 
quartiles as well as Spearman correlation coefficients. 
Continuous variables were adjusted for age. These anal-
yses were performed in IBM SPSS Statistics version 28 
(IBM Corp.).

All metabolomics multivariate analyses were per-
formed in SIMCA software v.17.0 (Sartorius Stedim Bio-
tech) with data unit variance-scaled and cross validation 
groups set to 7 (default). Principal component analysis 
(PCA) was used to explore clustering patterns of obser-
vations and outliers. Orthogonal projections to latent 
structures (OPLS) include not only x-values (metabolite 
variables i.e. peaks) but also dependent y-values, e.g., 
additional known factors that may influence models. 
Included y-values tested in an OPLS-model were par-
ticipant characteristics such as BMI, age, sex, education, 
smoking, physical activity, and year of data collection. To 
select y-values, a cut-off in the cross-validation analysis 
of variance (CV-ANOVA) of p < 0.05 was applied. OPLS 
models with HDS, rMDS, PDI, hPDI, uPDI and clus-
ters included one at a time as y-value were evaluated to 
explore clustering patterns of observations for each of 
these scores/indices/clusters. If significant models were 
achieved, the models were further explored by includ-
ing also participant characteristics as y-values. Lastly, 
OPLS with discriminant analysis (OPLS-DA) was per-
formed for OPLS models that remained significant both 
with and without the additional y-values included. Here, 
lowest quartile (Q1) was compared with highest quartile 
(Q4) of the score/index. The validity of the OPLS-DA 
model was assessed using permutation tests (n = 999). 
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Validated prediction models for performance are pre-
sented using the receiver operating characteristic (ROC) 
curve for OPLS-DA models. Also, to further test model 
quality, a test set (∼10% of participants) was selected by 
computerized randomization before any OPLS-DA anal-
ysis were performed. OPLS-DA models were run with-
out the test set participants and this was thereafter used 
to test the models’ ability to predict high or low dietary 
quality. The cumulative amount of explained varia-
tion in the data summarized by the model (R2X[cum] 
and R2Y[cum]) and the predictive ability of the model 
(Q2[cum]) are presented. Class discriminating variables 
(buckets) of interest from OPLS and OPLS-DA models 
were selected if variables had loading scores − 0.1 ≥ w ≥ 0.1 
and if they had among the 30 highest variable influence 
on projections values to obtain a reasonable number of 
models, and these were further assessed by univariate 
analysis. Mann–Whitney U-test was performed to evalu-
ate metabolites driving the separation in OPLS-DA mod-
els. To adjust for multiple testing in univariate analysis a 
False Discorey Rate (FDR) correction was applied; q val-
ues < 0.05 were regarded as significant.

Results
Characteristics of the participants
Women were evenly spread among the three age catego-
ries, whereas there were relatively fewer men in their 40’s 
(Table 1). Women were predominantly of normal weight 
and men predominantly overweight. Women exhibited 
higher levels of physical activity and university degree 
was more common among women than among men. 
For both sexes, about half of the participants had never 
smoked.

Women reported somewhat higher intake of protein 
and carbohydrates, expressed as percent of total energy 
intake, than did men (Table  2). Both sexes had similar 
median HDS and rMDS whereas PDI indices were some-
what higher among men. For both sexes, HDS, rMDS 
and hPDI showed Spearman correlation coefficients 
between ρ = 0.453–0.615, indicating good agreement 
in their expressions of a healthy diet pattern (Supple-
mental Tables S3-S4). PDI showed correlations between 
ρ = 0.101- 0.300 with HDS, rMDS and hPDI, whereas 
uPDI as expected showed negative correlations with the 
others. Clusters, not being on ordinal scale, were not 
evaluated for correlation.

Associations between metabolomics data and background 
variables
PCA did not yield any clear clustering patterns among 
the metabolites (Table 3). Next, an OPLS model was fit-
ted to explore associations between metabolomics data 
and participant characteristics to evaluate impact of these 
characteristics on the models. Among the background 

variables, age, sex, BMI, education and screening year of 
participation in the study were significantly influential in 
the OPLS model (p < 0.00001 for CV-ANOVA), whereas 
physical activity and smoking were not (Table 3). The first 
predictive component of the OPLS model was influenced 
by high BMI in one direction, and by high education and 
female gender in the other direction (Fig. 1). The second 
predictive component of the OPLS model was influenced 
by high BMI, female gender, high age and more recent 
year of study participation in one direction, and of high 
education in the other direction.

Associations between metabolomics patterns and a priori 
diet scores and indices
OPLS model with the a priori HDS exhibited poor fit, as 
indicated by model statistics and by no longer significant 
p-value for CV-ANOVA when all significant y-values 
(age, sex, BMI, education, and screening year of partici-
pation) were included in the OPLS model; this model was 
not further elaborated. OPLS model with a priori rMDS 
exhibited a slightly better fit, as indicated by signifi-
cant CV-ANOVA, R2 × 0.160, R2Y 0.079, and Q2 0.037. 
An OPLS-DA model was fitted for the two first predic-
tive components with the lowest quartile vs. the highest 

Table 1 General characteristics of study participants in the 
Västerbotten Intervention Programme
Variable Women

(n = 932)
Men
(n = 963)

All
(n = 1,895)

Age (y) %
40 28.1 15.4 21.6
50 36.5 42.3 39.4
60 35.4 42.4 38.9
BMI (kg/m2) %
18.5–25.0 51.0 34.3 42.5
>25.0–30.0 37.9 52.0 45.1
>30.0 11.2 13.7 12.5
Physical activity1%
Inactive 16.0 16.4 16.2
Moderately inactive 26.4 31.0 28.8
Moderately active 27.4 29.4 28.4
Active 29.8 22.8 26.3
Missing 0.4 0.4 0.4
Level of education %
Basic level, 9 years 16.4 21.3 18.9
High school 49.2 58.5 53.9
University 34.4 20.2 27.2
Smoking %
Current smoker 17.2 15.1 16.2
Former smoker 33.2 36.2 34.6
Never smoker 49.6 48.7 49.2
1Physical activity was measured by combining two questions about 
occupational and leisure time physical activity into the validated Cambridge 
Index of Physical Activity [27]

BMI, body mass index
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quartile of rMDS (Table  3). The ROC areas under the 
curve were 71% and the ability of the model to correctly 
predict Q1 and Q4 for rMDS was 50%/78%.

OPLS models with PDI and uPDI also exhibited a 
decent fit, as indicated by significant CV-ANOVA 
and R2 × 0.184, R2Y 0.061 and Q2 0.021 for PDI, and 
R2 × 0.199, R2Y 0.078 and Q2 0.000529 for uPDI 
(Table  3). Surprisingly, OPLS model for hPDI exhibited 
poor fit (CV-ANOVA non-significant). OPLS-DA models 

were therefore fitted for PDI and uPDI, for the two first 
predictive components with the lowest quartile vs. the 
highest quartile of the indices (Table 3; Fig. 2 for uPDI).

The ROC areas under the curve were 65% or more for 
both indices (Table 3). The ability of the models to cor-
rectly predict Q1 and Q4 for PDI was 42%/75% and for 
uPDI 59%/70%.

Table 2 Reported dietary intake of study participants in the Västerbotten Intervention Programme
Variable Women

(n = 932)
Men
(n = 963)

All
(n = 1,895)

Energy (kcal/d) 1422 ± 4221,2 1883 ± 587 1649 ± 559
Protein (g/d) 54.9 ± 18.2 69.0 ± 23.6 61.9 ± 22.2
Protein (E%) 15.5 ± 2.2 14.7 ± 2.3 15.1 ± 2.3
Animal protein (g/d) 39.1 ± 14.9 50.2 ± 19.3 44.5 ± 18.1
Vegetable protein (g/d) 15.8 ± 6.4 18.9 ± 8.0 17.3 ± 7.4
Carbohydrates (g/d) 170.6 ± 59.2 209.3 ± 78.0 189.6 ± 71.7
Carbohydrates (E%) 47.8 ± 7.5 44.2 ± 7.6 46.0 ± 7.8
Fat (g/d) 54.1 ± 19.3 78.8 ± 29.0 66.2 ± 27.5
Fat (E%) 34.3 ± 6.9 37.7 ± 7.2 36.0 ± 7.3
Fibre (g/d) 17.3 ± 6.9 18.3 ± 8.1 17.8 ± 7.6
PUFA (g/d) 9.0 ± 4.1 12.8 ± 6.4 10.9 ± 5.7
HDS 12.0 (9.0, 15.0) 12.0 (9.0, 14.0) 12.0 (9.0, 15.0)
rMDS
PDI
hPDI
uPDI

9.0 (7.0, 11.0)
47.0 (43.0, 51.0)
45.0 (41.0, 49.0)
44.0 (39.0, 48.0)

9.0 (7.0, 11.0)
48.0 (45.0, 52.0)
45.0 (41.0, 50.0)
45.0 (40.0, 49.0)

9.0 (7.0, 11.0)
48.0 (44.0, 51.0)
45.0 (41.0, 49.0)
44.0 (39.0, 49.0)

1Mean and standard deviation, or median and interquartile ranges
2Continuous variables adjusted for age

PUFA, poly-unsaturated fatty acids; HDS, Healthy Diet Score; rMDS, relative Mediterranean Diet Score; PDI, plant based diet index; hPDI, healthful plant based diet 
index; uPDI, unhealthful plant based diet index

Table 3 OPLS model statistics from analyses of data from 1,895 participants in the Västerbotten Intervention Programme
Model Nr of Lv1 n R2X[cum]2 R2Y[cum]3 Q2[cum]4 CV-ANOVA5 

(p-value)
ROC 
AUC6

Permuta-
tion test 
(Q2)7

Classi-
fication 
(Q1/Q4)

PCA-X 7 1,895 0.408 0.318
OPLS Back-ground data8 4 + 1 + 0 1,895 0.279 0.204 0.163 < 0.00001
OPLS rMDS9 1 + 1 + 0 1,895 0.160 0.0794 -0.0372 < 0.0000001
OPLS-DA rMDS Q1 vs. Q4 1 + 1 + 0 1002 0.184 0.122 0.0472 < 0.0000001 0.71/0.71 0.066314 50%/78%
OPLS HDS10 1 + 0 + 0 1,895 0.148 0.0194 0.00924 0.00015
OPLS PDI11 1 + 0 + 0 1,895 0.184 0.0608 0.021 < 0.0000001
OPLS-DA PDI Q1 vs. Q4 1 + 0 + 0 913 0.0450 0.0664 0.00473 1 0.65/0.65 -0.034014 42%/75%
OPLS hPDI12 1 + 0 + 0 1,895 0.100 0.0206 -0.000529 0.116
OPLS uPDI13 1 + 1 + 0 1,895 0.199 0.0776 0.0388 < 0.0000001
OPLS-DA uPDI Q1 vs. Q4 1 + 1 + 0 993 0.186 0.144 0.0589 < 0.0000001 0.72/0.72 -0.074214 59%/70%
OPLS men time period 1 clusters 1 + 0 + 0 799 0.120 0.0381 -0.000576 1
OPLS women time period 1 clusters 0 + 0 + 0 668
1 Latent Variables; 2 Cumulative fraction of the sum of squares of X explained by the selected latent variables; 3 Cumulative fraction of the sum of squares of Y 
explained by the selected latent variables; 4 Cumulative fraction of the sum of squares predicted by the selected latent variables, estimated by cross-validation; 
5 Analysis Of Variance testing of Cross-Validated predictive results; 6 Receiver Operating Area under the curve; 7 the intercept between real and random models, 
degree of overfit. 8 y-values included BMI, age, time, sex, education, 9 y-value included MDS, 10 y-value included HDS, 11 y-value included PDI, 12 y-value included 
hPDI, 13 y-value included uPDI, 14 High quality permutation test

Abbreviations: PCA, principal component analysis; OPLS, orthogonal projections to latent structures; OPLS-DA, orthogonal projections to latent structures 
discriminant analyses; BMI, body mass index; DII, Diet Inflammatory Index; rMDS, relative Mediterranean Diet Score; HDS, Healthy Diet Score; Q, first quartile; Q4, 
fourth quartile; PDI, plant based diet index; hPDI, healthful plant based diet index; uPDI, unhealthful plant based diet index
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Associations between metabolomics data and data-driven 
diet intake clusters
OPLS models were run with the inductively generated 
diet intake clusters included. These clusters had previ-
ously been generated among women and men separately, 
and therefore the OPLS models were run for each sex 
separately. No obvious patterns with respect to clusters 
were identified and no further modelling was performed 
(Table 3).

Metabolites that discriminated between different intake 
patterns
Metabolites that discriminated between different intake 
patterns in the models shown in Table  3 were  further 
inspected. Those that had a loading score w > ± 0.1 and 
that were among the top 30 influential variables based 
on projections scores were tested with univariate analy-
ses (Mann-Whitney U-test). All selected metabolites 
were significantly different between Q1 and Q4 of the 
respective intake patterns in univariate tests also after 
FDR (Table  4). For PDI, 1,5-anhydrosorbitol + ser-
ine and glutamine were higher in Q4 than in Q1, and 

2-hydroxyvalerate and 3-hydroxybutyrate were lower. For 
uPDI, participants in Q4 had higher 1,5-anhydrosorbitol, 
lactate and several of the lipid compartments and a lower 
acetate concentration compared to those in Q1. Also for 
rMDS, 1,5-anhydrosorbitol and lactate were found to dis-
criminate, but in the opposite direction of the findings 
for uPDI, indicating that these two scores capture similar 
dietary pattern.

Discussion
Associations between inductively created clusters of 
metabolites identified with NMR metabolomics and a 
priori diet pattern scores and indices and inductively cre-
ated dietary intake clusters were evaluated. Participants 
represented a large population-based cohort, and the 
dietary information was collected with a validated FFQ 
reflecting habitual intake. NMR metabolomics models 
were not able to predict dietary intake clusters and they 
showed poor association with HDS and hPDI. Somewhat 
better model fits were obtained for rMDS, PDI and uPDI 
although model qualities were not impressive.

Fig. 2a Results from OPLS-DA model of uPDI. Red circles represent quartile 4 and yellow triangles represent quartile 1. 2b OPLS-DA model of uPDI col-
ored by HDL-concentrations (low HDL, blue and high HDL, orange). X-axes, first predictive component explaining the variation between groups; Y-axes, 
second predictive component explaining the variation within groups

 

Fig. 1 Scores plot for OPLS model of metabolites and background variables. To the left higher education and female sex and to the right higher body 
mass index (BMI). X-axes, first predictive component; Y-axes, second predictive component. Each circle represents one participant
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Accurate measurement of habitual diet is challeng-
ing and there is a need for validated objective methods. 
Blood metabolite patterns reflect direct or enzymatically 
diet-induced metabolites and thus may capture imme-
diate responses to exposures, in contrast to the field of 
genomics. Hence, there is today great interest in evalu-
ating agreement between blood metabolite patterns and 
habitual food intake patterns. Still, for metabolomics to 
be useful in large epidemiological studies, putative bio-
markers have to reliably reflect habitual intake also when 
only one biological sample per individual is available. 
Previous research has shown this to be the case: Floegel 
and colleagues [28] used repeated fasting serum samples 
collected 4 months apart and demonstrated that reliabil-
ity for most of the 163 metabolites evaluated was good. 
The authors concluded that for most metabolites a single 
measurement is sufficient to assess long-term exposure in 
large epidemiological studies. Finally, urine samples have 
higher concentrations and wider range of food-derived 
compounds, except most lipid-soluble compounds, than 
has blood which is under homeostatic control. Hence, 
urine may be preferred for identifying biomarkers of food 
intake. Even so, in many large epidemiological studies 
blood samples and not urine samples are available.

A recent review summarized biomarkers of diet pat-
terns evaluated in smaller controlled intervention studies 
[6]. Most of the identified 30 studies used MS techniques 
but a handful used NMR technique like in our study. 
Many studies applied targeted metabolomics in search 
for known biomarkers, e.g., n-3 index, 24-h urinary 

electrolytes and carotenoids. Some studies were explor-
atory and the most commonly discovered biomarkers 
were those associated with intake of fish, protein and lip-
ids, but also meat, vegetables, fruit, dairy, chocolate, vita-
mins, whole grains and legumes. The review concluded 
that most biomarkers were associated with specific foods 
or nutritional aspects of the diet but, because these foods 
appear in many diet patterns, the biomarkers lacked 
specificity for a particular dietary pattern. The review also 
pointed out the challenge to compare results across stud-
ies that use different analytical platforms; when metabo-
lites were investigated within the same study with both 
MS and NMR techniques, only one overlapping metab-
olite was identified. Hence, comparisons of our results 
with those from studies using other metabolomics plat-
forms, and urine instead of serum as biofluid, should be 
made with caution [6]. Another recent review of metabo-
lomic biomarkers of healthy dietary patterns reported 
that metabolites associated with vegetarian diets were 
amino acids (emphasized in NMR metabolomics), 
whereas metabolites associated with the Mediterranean 
diet were lipids (emphasized in MS metabolomics) [9]. 
The authors likewise caution about comparing studies 
using different metabolomics platforms.

Only a few studies have evaluated habitual dietary 
patterns in larger cohorts, like ours. O’Sullivan and col-
leagues used NMR metabolomics but applied to urine 
samples [29]. Metabolites responsible for separation of 
clusters included TMAO, glycine, O-acetylcarnitine and 
phenylacetylglutamine, thus mainly reflecting red meat 

Table 4 Univariate statistics for metabolites that discriminated significantly between quartiles 1 (Q1) and 4 (Q4) in OPLS-DA models 
for relative Mediterranean Diet Score, Plant based Diet Index and Unhealthy Plant based Diet Index
Metabolite1 1H chemical shift region rMediterranean 

Diet Score
Plant based 
Diet Index

Unhealthful Plant based 
Diet Index

Q1 Q4 q2 Q1 Q4 q2 Q1 Q4 q2

1,5-anhydrosorbitol 3.893 ↑ ↓ 1.46E-3 ↓ ↑ 2.55E-11
1,5-anhydrosorbitol + serine 3.996 ↓ ↑ 0.0300
1,5-anhydrosorbitol + serine 4.005 ↓ ↑ 6.69E-5
1,5-anhydrosorbitol + unidentified 3.367 ↑ ↓ 2.20E-9 ↓ ↑ 6.51E-9
2-hydroxyvalerate 0.931 ↑ ↓ 3.02E-3
3-hydroxybutyrate 2.363 ↑ ↓ 0.0120
acetate 1.935 ↑ ↓ 1.35E-14
glutamine 2.454 ↓ ↑ 2.17E-3
glutamine + unidentified 2.119 ↓ ↑ 3.81E-3
lactate 1.34 ↑ ↓ 2.34E-4 ↓ ↑ 5.21E-3
lactate + proline 4.147 ↑ ↓ 2.32E-4 ↓ ↑ 3.05E-4
lipid 1.29 ↓ ↑ 8.87E-3
NAAs/fatty acyl allylic protons from lipoprotein lipids 2.018 ↓ ↑ 9.78E-3
phosphocholines, 
phosphoethanolamine + unidentified

3.239 ↑ ↓ 2.10E-7

1 Mean chemical shift (ppm) for the bucket used for Mann-Whitney U-test. Selected if variables had loading scores − 0.1 ≥ w ≥ 0.1 and if they had among the 30 
highest variable influence on projections values. 2 Mann-Whitney U-test. Significant Mann-Whitney U-test after FDR correction for 19 univariate tests (q < 0.05). ↑ = 
high, ↓ = low

Abbreviations: Q1, first quartile; Q4, last quartile
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and vegetable intake. A study using NMR metabolomics 
on a smaller sample compared intake data from repeated 
24  h recalls with metabolites in urine samples [30]. 
Here, metabolomics models were able to predict adher-
ence to healthy diets as captured by Nutrient Rich Food 
index, DASH diet and OMNIHEART. Perhaps associa-
tions between metabolomics patterns and dietary intake 
patterns are stronger when metabolites are compared 
with indices based on nutrient content rather than on 
food content, because of the heterogeneous content of 
macro-and micronutrients in foods. Several research-
ers have used serum samples like our study but applied 
MS metabolomics [10, 31]. Here, associations have been 
found between dietary indices and scores and metabolites 
such as fatty acids profiles and amino acids. With respect 
to food intake patterns, most metabolites have reflected 
intake of fish, fruits, vegetables, alcohol and whole grains; 
i.e., as for the evaluations of smaller controlled interven-
tion studies, metabolite patterns were specific for certain 
foods but not for dietary patterns per se.

We have previously shown that NMR metabolomics 
has the ability to distinguish between habitual meat and 
nonmeat consumers (97.5% correctly classified using 
serum samples and 91% correctly classified using urine 
samples), but lower ability to distinguish between habit-
ual vegans and nonvegans (92.5% correctly classified 
using serum samples and 75% correctly classified using 
urine samples) [32, 33]. Here, most of the discriminat-
ing metabolites were related to amino acids. This likely 
explains the poorer ability of NMR metabolomics than 
of MS metabolomics to separate dietary intake patterns 
beyond meat vs. no meat, at least for dietary intake pat-
terns based on food content rather than on nutrient 
content.

Plant-based dietary patterns have been associated 
with lower risk of cardiovascular diseases [34] and it is 
therefore important to identify these dietary patterns in 
research on diet and health. Recent comparisons of the 
PDI indices and metabolites in plasma using MS among 
Danish [35] and American cohorts [36] found a minor 
set of metabolites that were specific for each index. In 
our analyses using NMR metabolomics, glutamine was 
one of the discriminating metabolites that in the PDI-
model was higher in Q4 than in Q1. Glutamine has been 
found to be higher in individuals with diets that exclude 
meat and other animal-based foods [32], and thus have a 
higher intake of plant food. 2-hydroxyvalerate, a metabo-
lite found in meat and produced endogenously, was lower 
in Q4 than in Q1 for PDI, and this can possibly indicate 
a lower intake of meat. 3-hydroxybutyrate, a keton body 
and metabolite from branched chain amino acids, also 
was lower in Q4 than in Q1 for PDI. The strongest OPLS-
DA models were obtained when comparing Q1 and Q4 
for rMDS and uPDI.

For rMDS, Q4 was associated with a lower concentra-
tion of 1,5-anhydrosorbitol than Q1. This metabolite is a 
validated marker of short-term glycemic control. In addi-
tion, the lactate concentration was low in Q4, and high 
concentrations have previously been reported in meta-
bolically impaired subjects [37]. The opposite was seen 
for uPDI, which is an index constructed so that a higher 
score results from consumption of unhealthful plant-
based foods such as fruit juice, refined grains, sugar-
sweetened soda, potatoes, desserts, and sweets. At last, 
in uPDI acetate, a short-chain fatty acid, was lower in Q4 
than in Q1. Acetate can be produced by gut bacteria but 
evidence whether serum acetate increases after increased 
dietary fiber intake are inconclusive [38]. Studies have 
reported that acetate is higher in type 2 diabetes patients 
than in healthy subjects [33]. Reduction in weight also 
has been associated with increased serum acetate [39]. 
In sum, the metabolites discriminating between uPDI Q1 
and Q4 do not seem to be markers of certain foods, but 
rather markers of consequences of unhealthy eating.

Compared with the more sensitive mass spectrometer 
(MS)-based metabolomics, NMR is not able to detect 
low-concentration metabolites and thus has poorer abil-
ity to capture compounds such as lipids, fibers and vita-
mins. This may explain some of the poor associations 
between our metabolomics patterns and healthy vs. 
unhealthy dietary intake patterns. However, reasons for 
using NMR metabolomics in dietary studies are minimal 
sample preparation, rapid analysis of high reproducibil-
ity, reliable metabolite identification, ability to quantify 
metabolites and low cost [8]. It is therefore important to 
evaluate the ability of NMR metabolomics to serve as a 
biomarker of habitual diet for use in large epidemiologi-
cal studies. Further, for personalized nutrition strategies, 
NMR has been pointed out as the optimal technical plat-
form because of its technical reliability and affordability 
[40]. A healthy diet usually refers to low intakes of red 
and processed meat, trans fatty acids and sodium, and 
high intakes of fruit, vegetables, legumes, whole grains, 
and nuts and seeds [1]. How intakes of dairy, potatoe, 
plant oils like palm oil and alcohol should be classified 
is debated and varies between different definitions and 
indicators, as illustrated by the indexes used in this proj-
ect. This may further explain different results in different 
studies.

The scores and indices evaluated in this study capture 
healthy diets in slightly different ways. In the rMDS, 
higher scores are assigned to high intakes of vegetables 
(excluding potatoes), fruit, legumes, fish, olive oil, cereals 
and moderate alcohol intake. Lower scores are assigned 
to high intakes of total meat and dairy products. Intakes 
of all components are energy adjusted before individuals 
are ranked into tertiles. HDS does not include potatoes, 
juices, legumes or alcohol among beneficial foods, and 
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it does not include dairy or poultry among unfavorable 
foods. Also, there is no energy adjustment before ranking 
individuals on intake. Lastly, the PDI simply divides food 
intake into those of vegetable origin and those of animal 
origin, regardless of associations with health outcomes. 
Hence, refined grains, sodas and sweets and desserts 
receive positive scores and only foods of animal origin 
receive reverse scores. hPDI distinguishes between health 
aspects and only assigns positive scores to healthful 
foods of vegetable origin and reverse scores for unhealth-
ful foods of vegetable origin as well as for animal foods. 
Finally, uPDI is an anomaly that assigns positive scores 
to the unhealthful foods of vegetable origin and reverse 
scores to all other foods. No adjustment for energy intake 
is made when creating the PDI indices. Negative correla-
tions between uPDI and the other scores and indices, and 
the positive correlations among rMDS, HDS and hPDI, 
are therefore expected. Further, each score and index 
represent different combinations of amino acids, lipids 
and carbohydrates and these are detected by NMR tech-
nique to different extents. Hence, it is no surprise that a 
comparison between each score or index and detected 
metabolites yields somewhat different results.

Postmenopausal status of the women was not mea-
sured and may have affected metabolite patterns among 
women in the older age group that we were unable to 
explain. We used fasting blood samples and not post-
prandial blood samples; the former are more influenced 
by background characteristics as serum concentrations 
are controlled by homeostasis and reflect exogenous as 
well as endogenous processes, whereas the latter show 
stronger traces of food metabolites. Hence, weaker asso-
ciations between diet intake data and circulating metabo-
lites are expected from epidemiological studies than from 
intervention studies [7]. Still, biomarkers that have been 
identified in cohort and case-referent studies have proven 
to be more sensitive and robust, perhaps because they 
are detectable in spite of metabolite degradation during 
storage [7]. Regardless of which study design is optimal 
for comparison with metabolomics data, the aim of the 
current project was to identify objective biomarkers of 
habitual dietary intake.

The FFQ consisted of 64 food items, decided upon 
in 1985 and unchanged since to maintain continuity 
in data collection. Hence, it is a somewhat crude esti-
mate of the diet diversity of inhabitants in Västerbotten 
due to the limited number of food items included and 
because it lacks modern products such as vegan alter-
natives. Nuts and seeds are not captured, and fruits and 
vegetables are only captured by a few questions. During 
2020–2022 a new updated and extended digital version 
has been developed that addresses these issues, but the 
dietary data used for the current analyses suffer from the 
limitations of the older version. Also, the original version 

contained 84 food items that were later reduced to 64 
items mostly by combining similar food stuffs. Most vali-
dations were carried out on the 84-item version but there 
is little reason to believe that these results do not also 
apply to the 64 version.

Strengths of the presented analyses include the large 
sample size for a metabolomics project and that subjects 
originated from a large, population-based cohort that has 
been well characterized over time. We hence believe that 
the results can be generalized to populations with simi-
lar Western diets. Diet scores, indices and clusters were 
created within the entire NSHDS database with over 120 
000 participants, yielding robust estimates of these vari-
ables as they reflect relative positions within the sample 
in which they were created. The FFQ has been validated, 
blood was donated concurrently with questionnaire data 
and blood samples have been stored at -80 degrees. Limi-
tations include that the FFQ only included 64 food items, 
the inherent measurement bias with all subjective dietary 
intake tools, and that NMR metabolomics only detects 
somewhat larger metabolites and thus has poorer ability 
to capture lipids, fibers and vitamins in the diet.

Conclusions
Associations between blood metabolite patterns and a 
priori as well as data-driven food intake patterns were 
poor. NMR metabolomics may not be sufficiently sen-
sitive to metabolites that distinguish between com-
plex dietary intake patterns, for example lipids. There 
is a need for intervention studies over longer periods of 
time where several levels of intake aligned with different 
dietary intake patterns are experimented with, and differ-
ent metabolomics techniques evaluated.
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