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Does the ketogenic diet improve 
neurological disorders by influencing gut 
microbiota? A systematic review
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Abstract 

Background The aim of this systematic review is to evaluate the changes in gut microbiota (GM) induced 
by the Ketogenic Diets (KD) as a potential underlying mechanism in the improvement of neurological diseases.

Methods A comprehensive search was conducted on three electronic databases, including PubMed/Medline, 
Web of Science, and Scopus until December 2022. The inclusion criteria were studies that described any changes 
in GM after consuming KD in neurological patients. Full text of studies such as clinical trials and cohorts were added. 
The quality assessment of cohort studies was conducted using the Newcastle–Ottawa Quality Assessment Scale 
and for the clinical trials using the Cochrane Collaboration tool. The search, screening, and data extraction were per‑
formed by two researchers independently.

Results Thirteen studies examining the effects of the KD on the GM in neurological patients were included. Stud‑
ies have shown that KD improves clinical outcomes by reducing disease severity and recurrence rates. An increase 
in Proteobacteria phylum, Escherichia, Bacteroides, Prevotella, Faecalibacterium, Lachnospira, Agaricus, and Mrakia 
genera and a reduction in Firmicutes, and Actinobacteria phyla, Eubacterium, Cronobacter, Saccharomyces, Claviceps, 
Akkermansia and Dialister genera were reported after KD. Studies showed a reduction in concentrations of fecal short‑
chain fatty acids and branched‑chain fatty acids and an increase in beta Hydroxybutyrate, trimethylamine N‑oxide, 
and N‑acetylserotonin levels after KD.

Conclusion The KD prescribed in neurological patients has effectively altered the GM composition and GM‑derived 
metabolites.
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Introduction
Various studies have been published on a new thera-
peutic method for neurological diseases in recent years. 
According to the articles, neurological diseases such 
as epilepsy, autism spectrum disorder (ASD), multiple 
sclerosis (MS), depression, Parkinson’s disease (PD), 
and Alzheimer’s disease (AD) are the major cause of 
disability-adjusted life years (DALYs) and the second 
leading cause of mortality in the world, as well as one of 
society’s most burdensome diseases. Studies show that 
neurological disorders have increased in recent years. 
The total number of deaths (39% increase) and DALYs 
(27% increase) from all neurological disorders have 
increased. Although numerous treatments have been 
suggested for neurological diseases, patients are resist-
ant and do not respond appropriately [1–4].

Several studies have evaluated diets as a treatment/
control method for chronic diseases. The consump-
tion of a prudent/Mediterranean-like diet in chronic 
obstructive pulmonary disease (COPD) patients, Die-
tary Approaches to Stop Hypertension (DASH) for 
metabolic and cardiovascular disease, and Ketogenic 
Diets (KD) in epileptic patients have been evaluated 
with satisfactory results. KD has been reported to ben-
efit pediatric-resistant epilepsy since the 1920s. This 
regime usually has a 4:1 ratio of lipid to non-lipid (fat 
to protein and carbohydrate), consisting of a tightly 
controlled high-fat, low-protein, and low-carbohydrate 
diet. According to studies, this effective treatment 
increases the levels of ketone bodies (KBs), which are 
anticonvulsants and provide brain energy as alterna-
tives to conventional fuel. Due to KBs’ antioxidant and 
anti-inflammatory properties, they are essential neu-
roprotective agents. Besides its effects on epilepsy, KD 
offers many additional benefits, including improved 
energy, memory, social functioning, quality of life, and 
reduced negative affect [5–15].

Additionally, studies indicated that the gut micro-
biota (GM) composition was significantly altered due to 
KD’s low carbohydrate and high-fat content, consider-
ably improving neurological symptoms. After a week of 
KD treatment in refractory epileptic patients, Xie G.,et 
al. 2017, observed a reduction in GM abundance, and 
increased in Bacteroidetes and a reduction in Proteobac-
teria. They found a reduction in seizure frequency after 
KD implementation in these patients [5, 7, 8, 10, 11, 16].

Recent studies introduced the term "microbiota-gut-
brain axis" as a functional communication between the 
GM and the nervous system. According to this theory, 
GM disturbances are thought to be associated with nerv-
ous system disorders such as epilepsy, ASD, MS, Alz-
heimer’s disease, and Glucose Transporter 1 Deficiency 
Syndrome (GLUT1 DS) [1–3, 5, 16, 17].

GM produces chemicals that significantly impact 
the nervous system, including short-chain fatty acids 
(SCFAs), nitric oxide, serotonin, and gamma-aminobu-
tyric acid. Human cells can identify these metabolites, 
which may influence receptors to act or trigger metabolic 
pathways by resembling host cell products [2–4, 6, 8, 9].

Nowadays, with advances in our knowledge about the 
significant role of GM in our body and its relation with 
the nervous system, also the effect of KD on neural func-
tion, researchers have started to evaluate their impact on 
other neurological diseases, especially in those with the 
most frequencies, burdens, and persistent symptoms and 
in most cases, there has been a positive change in con-
trol of the activity of their diseases. A study by Ferraris 
C., et al. 2021, reported an improvement in the reduction 
of seizure attacks and involuntary movements (> 50%) 
in epileptic patients who underwent KD for about one 
month [2, 3, 8–10, 12, 15, 17].

We intend to investigate the effect of KD on the com-
position and functions of GM and its influence on the 
progression of neurological diseases, given the increasing 
prevalence and burden of neurological disorders, the var-
iable responses to existing treatment methods, and the 
growing awareness of how GM plays a critical role in the 
functioning of the nervous system.

Materials and methods
All research steps were performed according to the 
preferred reporting items for systematic review and 
meta-analysis (PRISMA) guidelines for reporting in this 
systematic review [18].

Search strategy
A systematic literature search was conducted on three 
electronic databases, including PubMed/Medline, Web 
of Science, and Scopus using standard keywords until 
December 2022. Also, to complete our search, we used 
Google Scholar and the reference of articles related to 
our topic.

The following search terms were used:
"ketogenic diet" OR "low carbohydrate diet "OR "keto-

sis" OR "exogenous ketones" OR "keto" OR "ketosis diet" 
OR "ketones") AND ("microbiome" OR "microbiota" OR 
"intestinal microbiome" OR "intestinal microbiota" OR 
"intestinal microflora" OR "microflora" OR "intestinal 
barrier" OR "gut barrier" OR "leaky gut" OR "gut micro-
biota" OR "gut microbiome" OR "microbiome-derived 
metabolites" AND" neurology disease" OR" neurological 
disorder" OR" neurodevelopment disease."

Study selection
All references were imported to End Note version 9.3.3, 
and duplicating studies were removed. Two researchers, 
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MM and NL, reviewed and screened titles, abstracts, and 
full texts according to inclusion and exclusion criteria. 
After removing duplicated studies and reviewing the lit-
erature by two reviewers, any conflicts during screening 
were discussed and resolved by the senior authors’ opin-
ion. The population of our study is patients with neu-
rological diseases. The ketogenic diet has been given to 
patients for intervention, and the clinical outcomes and 
changing GM are evaluated. The primary outcome inves-
tigates changes in GM and their metabolites-derived 
products, and the secondary outcome pursues improve-
ments in neurological symptoms and clinical conditions. 
Clinical trials and cohort studies are included in this sys-
tematic review.

Inclusion criteria
1. Studies described any changes in GM after consum-
ing KD. 2. The population of interest was patients with 
neurological diseases who were on KD. 3. Type of study: 
cross-sectional, case–control, clinical trial, and cohort. 4. 
Full-text studies were available in English.

Exclusion criteria
1. Studies that reported GM changes in non-neurological 
diseases after consuming KD. 2. reviews, commentaries, 
case studies, animal studies, and letters.

Data extraction
Data regarding any changes in GM after consuming KD 
in neurological patients was retrieved.

The following items were extracted:

1. General and methodological characteristics of the 
cohort studies (first author name, year of publica-
tion and country, study population, and study setting, 
sample size, type of KD, follow-up duration, microbi-
ota analysis method, changes on microbiota, clinical 
outcomes and quality score).

2. General and methodological characteristics of the 
clinical trials (first author name, year of publication 
and country, study population, and study setting, 
sample size, intervention group, control group, dura-
tion, microbiota analysis method, changes on micro-
biota, clinical outcomes and quality score).

Quality assessment
All cohort studies were reviewed using the Newcas-
tle–Ottawa Quality Assessment Scale (NOS) for qual-
ity assessment [19]. This scale consists of evaluating the 
methodological quality of the studies in eight items for 
cohort studies: Selection of participants (maximum four 
scores), comparability of subjects (maximum two scores), 

and assessment of outcome (maximum three scores). 
According to quality assessment scales, after calculating 
scores for cohort studies, "good quality" studies define 
as if a study achieves 3 or 4 points in the selection part, 
AND 1 or 2 points in the comparability part, AND 2 or 3 
points in the outcome part. "Fair quality" studies defined 
as, if a study achieves two scores in the selection part, 
AND 1 or 2 scores in the comparability part, AND 2 or 3 
points in the outcome part. In addition, if a study gets 0 
or 1 in the selection part OR 0 score in the comparability 
part OR 0 or 1 score in the outcome part, it is considered 
"poor quality."

We assessed the methodological quality of the inter-
ventional studies using the Cochrane Collaboration’s tool 
for assessing the risk of bias for randomized clinical tri-
als (RCTs) and quasi-experimental trials. The Cochrane 
Collaboration criteria include seven items for selec-
tion bias (random sequence generation and allocation 
concealment), performance bias, detection bias, attri-
tion bias, reporting bias, and other forms of bias. Two 
authors assessed the quality of included studies. In case 
of any disagreement, the issue was resolved by the senior 
authors’ opinion [20, 21].

Statistical analysis
Due to heterogeneity between studies in outcomes, out-
come assessment methods, study design, and setting, the 
results were synthesized qualitatively, and no meta-anal-
ysis has been done.

Results
Search results and study selection
The PRISMA flow diagram for study selection is shown 
in Fig. 1. In the electronic search of the three databases, 
1994 studies were retrieved (PubMed/Medline = 471, 
Scopus = 717, Web of Science = 806). Seven hundred 
twenty-two duplicate studies were removed, and 1272 
studies remained. After reviewing titles and abstracts, 
one thousand thirty-eight studies were disqualified. One 
hundred fifty studies were deprived according to inclu-
sion and exclusion criteria. After that, 84 studies were 
reviewed for full text. Finally, 13 studies were selected for 
this systematic review and met the inclusion criteria.

Study characteristics
Characteristics of the 13 studies eligible for this system-
atic review are presented in Tables  1 and 2. Of the 13 
studies, six (46.2%) were clinical trials [12–17], seven 
(53.8%) were cohort [5–11], and all studies were pub-
lished from 2016 until 2022. Follow-up in cohort studies 
was various, from one month to six months. In clinical 
trials, studies follow up on KD in patients from one week 
to eighteen months. Studies were conducted on different 
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continents such as Europe (Italy = 2, Germany = 2, Swe-
den = 2) [5, 8, 12, 13, 15, 17], America (United States = 4) 
[6, 9, 11, 14], Asia (Korea = 1, China = 2) [7, 10, 16]. The 
total number of patients with neurological diseases for 
this systematic review is 307. In 10 studies, the gender 
of patients was reported, of which 106 were males, and 
63 were females [5, 7–12, 14, 16, 17]. The age of patients 
varied between studies, and the ages of study participants 
ranged from 2 to 65 years. Eight studies evaluated KD in 
children [5, 7–11, 14, 16], and all participants in the three 
studies were adults [6, 13, 15]. Two studies have been 
conducted on both children and adults [12, 17].

Quality of studies
The quality assessment of cohort studies was conducted 
according to the Newcastle–Ottawa Quality Assessment 
Scale. In this systematic review, four cohort studies were 
assessed as good qualities [6–9] and three as poor quali-
ties [5, 10, 11]. Because the non-exposure group was not 
considered in these three studies and the patients were 
evaluated before and after the KD treatment period, 
therefore they obtained poor quality in design. All six 
clinical trials were described as low-risk bias studies in 
performance, detection, and reporting biases. Four stud-
ies (66.6%) were determined as high risk for attrition 
bias; two expressed low risk in this category. Regarding 
the selection bias, three studies (50%) were considered as 

high-risk bias studies due to being quasi-experimental. 
All studies had an unclear risk for other biases (Supple-
mentary Tables 1 and 2).

Clinical outcomes
Most studies show that KD improved clinical outcomes 
by reducing disease severity, attack frequency, and 
relapse rate.

KD’s effect on children with refractory epilepsy has 
been evaluated in seven studies. In these studies, sei-
zure frequencies decreased by more than 50% with 
concomitant electroencephalogram (EEG) improve-
ments. One study examined the effect of KD on 
refractory epilepsy at all ages. Moreover, these stud-
ies indicate that KD reduced seizure frequency and 
improved treatment response in most patients. They 
also found that KD significantly shortened the attack 
duration and post-ictal phase. In some cases, a com-
plete response was observed, and patients were free 
of seizures. They also observed decreased post-ictal 
fatigue, improved cognition, and improved motor 
function in some patients [5, 7, 8, 10–12, 16].

GLUT-1 DS patients’ paroxysmal dyskinesia and pro-
gressive global resistance to physical exertion were elimi-
nated following KD treatment in one study [17]. Two 
studies show that KD and MS treatment responses cor-
relate positively. The patient’s quality of life improved 

Fig. 1 Flow Chart of Study Selection Process
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during KD treatment, and the relapse rate, disability, 
fatigue, and depression were reduced [13, 15].

KD has been evaluated in two studies on children 
with ASD. To assess KD intervention clinical outcomes, 
the autism diagnostic observation schedule 2nd Edition 
(ADOS-2) and childhood autism rating scale 2nd Edition 
(CARS-2) were used. These studies indicate that most 
KD patients have higher ADOS-2 and CARS-2 scores 
than their peers. Social, behavioral, and comparison 
scores developed during treatment, and one study found 
a significant relation between KD and CARS-2 scores [9, 
14]. Moreover, in one study on patients with mild cogni-
tive impairment (MCI), KD positively affects cognitive 
impairment by normalizing and balancing the GM [6].

Taxonomic changes in the GM
Six studies examined the changes in GM after KD in 
patients with refractory seizures [5, 7, 8, 10, 11, 16]. 
Dahlin M. et  al. 2022 evaluated KD efficiency in drug-
resistant epileptic patients and its effect on GM. The 
study found that the bacteria Gordonibacter pamelaeae, 
Eggerthella lentha, Lactococcus lactis, and Bifidobacte-
rium longum susp. Longum were associated with anti-
seizure responses, while others, Alistipes shahii and 
Eubacterium rectale, related with no reaction to KD. The 
authors suggest that specific Bifidobacteria may reduce 
seizures in individuals with refractory epilepsy [5]. KD 
treatment reduced species diversity, increased Bacte-
roides, and decreased Firmicutes and Actinobacteria after 
a study conducted by Spinelli E. et  al. 2018. The preva-
lence of Clostridiales, Clostridia, Ruminococcaeceae, 
Lahnospiraceaea, Alistipes, and Tikenellacases was signif-
icantly higher in non-responders to KD treatment. After 
implementing KD, some changes in GM composition and 
a 50% reduction in seizure frequency in patients were 
observed. The clinical improvement could be related to 
modulation of GM or not and further investigations are 
needed [11].

A significant increase in Proteobacteria and the genus 
Escherichia and a reduction in Actinobacteria (primar-
ily due to a reduction in the genus Bifidobacterium) after 
three months of KD treatment in severe epileptic patients 
were observed by Lindefeldt M. et al.2018. In addition to 
the decrease in Eubacterium rectale and Dialister, 41.7% 
of patients experienced a 50% reduction in seizures. 
83.3% of the patients reported improvement in their cog-
nition and motor functions [8].

Based on Zhang Y. et  al. 2018, there was a significant 
reduction in Alpha diversity after KD treatment. Bacteri-
odetes levels were significantly increased, and Firmicutes 
levels decreased. Non-responsive patients had increased 
levels of Clostridiales, Ruminococcaceae, Rikenellaceae, 
Lachnospiraceae, and Alistipes. A total of 10% of the 

patients became seizure-free, 15% experienced a reduc-
tion of seizures exceeding 90%, 25% experienced a reduc-
tion of 50 to 89%, and 50% experienced a drop of less than 
50%. Electroencephalograms (EEGs) were improved in all 
patients, with a more than 50% reduction in seizures [10].

According to Xie G. et al. 2017, Bacteroides and Prevo-
tella levels increased significantly, whereas Cronobac-
ter levels decreased. Approximately 21% of participants 
became seizure-free, and 43% experienced a 50% to 
90% reduction in seizure frequency. Other pathogens 
mentioned include Streptococcus, Alistipse, Rumini-
clostridium, Barnesiella, Enterococcus, and Erysipelato-
clostridium also decreased after KD [16].

In a study by Lee R. et  al.2018, they found decreased 
levels of Bifidobacterium, Eggerthella, and Enterococcus 
while increasing levels of Bacteroides, Faecalibacterium, 
Lachnospira, Roseburia, and Veillonella [14].

According to one study, there was an increase in Aga-
ricus and Mrakia genera after KD treatment in MCI 
patients, while Saccharomyces and Claviceps (higher clas-
sification) decreased [6].

A study compared GM changes in MS patients after 
KD. The authors noted a reduction in pioneer bacte-
rial groups and an increase in Akkermansia genus 
concentrations [15].

KD has been shown to affect GM in GLUT-1 patients 
in one clinical trial. This study reported an increase in 
Desulfovibrio spp. [17].

Changes in GM-derived metabolites
The effects of KD on GM-derived metabolites in 
patients with refractory seizures were examined in 
one study; this study demonstrated a decrease in fecal 
SCFA concentrations, including acetate, propionate, 
butyrate, and branched-chain fatty acids, with a posi-
tive relation between isobutyrate and changes in GM 
composition [12].

KD decreased beta Hydroxybutyrate (BHB) serum 
level as a gut-derived metabolite in patients with ASD 
[14]. A cohort study reported increased GM-derived tri-
methylamine N-oxide and N-acetylserotonin levels [9]. 
A clinical trial study evaluated the KD treatment on MS 
patients and observed a high serum level of BHB after 
nine months of treatment [13].

Discussion
Several studies have demonstrated that the KD con-
fers neuroprotection by restoring/promoting beneficial 
microbes in the GM of patients with neurodegenerative 
diseases. In addition, this regime can potentially improve 
and regulate memory, learning, and disease progression, 
reducing the frequency of relapses and attacks. Dur-
ing the KD regime, GM compositions and GM-derived 



Page 9 of 14Mazandarani et al. Nutrition Journal           (2023) 22:61  

metabolites were replaced, these changes possibly result 
in clinical improvements [1–4, 23–27].

Effect of the ketogenic diet on neurological diseases 
through ketone bodies
Although the underlying pathology of numerous neu-
rological diseases has not been entirely determined, the 
role of inflammation, oxidative stress, and mitochon-
drial dysfunction in some neurological diseases, includ-
ing Seizure, MS, ASD, PD, and AD has been identified. 
KBs produced from KD implementation can provide 
neuroprotective effects, including reducing oxidative 
stress, sustaining energy levels for CNS cells, adjusting 
deacetylation activity, and modulating inflammatory 
responses [28].

Several neuronal injuries result from glutamate exci-
totoxicity, calcium overload, mitochondrial dysfunction, 
and oxidative stress. The ability of KBs to counteract oxi-
dative stress has been observed in studies, particularly in 
protecting the nervous system. Mitochondria is known 
to be the main source of reactive oxygen species (ROS) 
production, and glutathione peroxidase (GSH-Px) is an 
important enzyme involved in ROS formation process. 
In normal condition, superoxide anion production dur-
ing oxidative phosphorylation is relatively low. However, 
when mitochondria are damaged, calcium ions become 
overloaded, and ROS level increases, leading to exci-
totoxic damage [29, 30]. KD helps lower blood glucose 
levels and promotes ketone production in the liver. The 
increase in KBs primarily occurs through the oxidation 
of fatty acids, particularly polyunsaturated fatty acids 
(PUFAs). PUFAs activate peroxidase by blocking volt-
age-gated sodium and calcium channels and regulating 
membrane receptors in neurons or inducing the expres-
sion of mitochondrial uncoupling protein (UCP). This 
uncoupling process reduces mitochondrial membrane 
potential, ultimately decreasing ROS production [29, 
31]. The oxidative regulation has an impact on Complex 
I/III in the ROS/RNS respiratory chain. Research has 
shown that mitochondrial dysfunction and the inhibi-
tion of complexes I, II, and III can occur due to epileptic 
seizures. However, using KD can enhance the inhibition 
of complex II/III and significantly improve mitochondria 
function during oxidative stress [28, 32, 33]. Although 
the exact mechanisms by which KD reduces seizures 
are not fully understood, KBs and PUFAs, which can be 
increased through KD implementation and GM altera-
tions, may play critical roles in its anti-seizure effects. 
As stated in the studies, KBs increase inhibitory neuro-
transmitters, activate potassium channels, and enhance 
energy production in the nervous system, thereby rais-
ing the seizure threshold in the brain, and PUFAs lead to 
increased energy transcripts, enhanced energy reserves, 

and stabilized synaptic function. This ultimately prevents 
neuronal hyperexcitability, which leads to anti-seizure 
function [34].

As mentioned above, KD has the potential to improve 
the functioning of mitochondria and alter glucose 
metabolism, leading to a decrease in the production of 
advanced glycation end products (AGE). The accumula-
tion of AGE during the aging process can speed up the 
progression of AD. KBs, particularly β-Hydroxybutyric 
acid (βHB), have been found to mitigate the toxicity of 
1-methyl-4-phenylpyridine (MPP +) on neurons cultured 
in vitro and reduce the toxicity of amyloid protein frag-
ment (Aβ) on hippocampal neurons [35]. Additionally, 
according to the animal study of Beckett T, et  al. 2013, 
KD can enhance the electrophysiological function of the 
brain in AD mice [36]. While animal studies have shown 
promising results, clinical research has not yet provided 
definitive conclusions.

Effect of the ketogenic diet on neurological diseases 
through gut microbiota
Recent studies suggest complex interactions between 
the GM and the central nervous system (CNS). The GM 
influences the development and balance of the CNS 
through immune, circulatory, and neural pathways, while 
the CNS affects the GM through stress and endocrine 
responses, called the "gut microbiota-brain axis." The 
vagus nerve is mainly responsible for the direct commu-
nication between GM and CNS. As stated in the studies, 
cutting this nerve reduced neurogenesis regulated by the 
GM and expression of brain-derived neurotrophic factor 
in the hippocampus [37]. Moreover, the GM also pro-
duces neurotransmitters and neuropeptides. Enterococ-
cus spp., Streptococcus spp., and Escherichia spp. generate 
serotonin; Lactobacillus spp. and Bifidobacterium spp. 
produce gamma-aminobutyric acid (GABA); Escherichia 
spp., and Bacillus spp. produce noradrenaline and dopa-
mine. Some species in Bacteroidetes and Firmicutes phy-
lum produce short-chain fatty acids (SCFAs) like acetate, 
propionate, and butyrate through the fermentation of 
insoluble dietary fibers. GM produces an enzyme called 
glutamate decarboxylase, which converts glutamate to 
GABA. These bacteria have also been shown to affect 
the expression of GABA and the N-methyl-D-aspartate 
(NMDA) receptors in the brain in animal models [37]. 
In animal studies, it has been shown that modulating gut 
microbiota composition could be effective on neurotrans-
mitters’ concentration. For example, when mice were 
given Lactobacillus rhamnosus orally over a long period, 
it led to increased expression of GABAB1b mRNA in 
the cingulate and prelimbic region and accompanying 
reduced expression in the hippocampus, amygdala, and 
locus coeruleus. These neurotransmitters cannot cross 
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the blood–brain barrier (BBB) and have limited direct 
effect on CNS function; however, they may indirectly 
influence the CNS system through the enteric nervous 
system, vagus nerve, and modulation of peripheral recep-
tor expression. Moreover, imbalances in the GM can lead 
to increased intestinal barrier permeability and activation 
of an immune response in peripheral tissues. This can 
result in heightened signalling of cytokines/chemokines 
through neuronal or humoral pathways, potentially trig-
gering an inflammatory response in the CNS where dis-
ruption of the BBB is considered an essential step [37, 
38]. The study by Olson S., et al.2018, declared that KD 
alters GM and can protect against acute seizures in a 
mouse model. Mice treated with Akkermansia and Para-
bacteroides were protected against seizures compared to 
those in the control diet group [39].

Taxonomic changes in the GM and clinical outcome
It has been extensively studied that KD is effective in 
treating patients with severe and refractory seizures, 
and fortunately, the results of various studies have 
been admissible. The effects of GM changes on clini-
cal improvement in epileptic patients treated with KD 
were examined in six studies. Since the KBs produced 
in the KD, as a source of energy for the brain, can pass 
through the blood–brain barrier by a special blood 
transporter, the issue of improvement of patients’ 
symptoms using this diet was investigated. Various 
studies have explored its effects on the amelioration of 
patients’ treatment [25–27, 40–47].

Although the difference in the amount of intervention 
period and follow-up time was different in several stud-
ies, overall, the changes in the composition of GM were 
in favor of an increase in the relative abundance of bacte-
rial genera Escherichia (E. coli), Clostridia (Clostridiales, 
Clostridium, Lachnospiraceae, and Ruminococcaceae), 
Alistipes, Bacteroides, Desulfovibrio, Actinomycetaceae 
family and Bacteroidetes phylum and a decrease in the 
relative abundance of bacterial genera, Bifidobacteria 
(B. longum), Eubacterium (E. rectale), Dialister, Entero-
cocci (E. faecium), Eggerthella (E. lenta), Cronobacter, 
and some genera of Firmicutes and Proteobacteria phy-
lum were observed. As stated in these studies, more than 
a 50% reduction in patient seizure attacks was reported. 
This clinical improvement could be a result of these new 
GM combinations after KD treatment.

Unfortunately, most studies have had small sam-
ple sizes because KD is an expanding but uncommon 
treatment option in neurodegenerative diseases. The 
studies had varied designs, sample processing, analysis 
methods, and demographic characteristics. Therefore, a 
lack of consistent outcomes is expected. For example, 
two cohort studies and one clinical trial confirmed that 

Bifidobacteria abundance was reduced in drug-resistant 
epilepsy patients after ingestion of KD. This finding is 
not surprising since KD is usually fiber-free, and Bifido-
bacteria needs fiber to survive [5, 8, 16]. However, in a 
cohort study, the genus Bifidobacteria was increased in 
epileptic children compared with healthy age-matched 
controls after KD treatment [7]. Therefore, the results 
of studies regarding changes in bifidobacteria abun-
dance were conflicting.

Tumor Necrosis Factor Alpha (TNF-α) is an inflam-
matory cytokine associated with epilepsy. In addition, 
Bifidobacteria species (B. longum and B. breve) were 
associated with TNF-α levels, and they were higher in 
patients who started KD and, they had experienced a 
reduction in seizure frequency. Bifidobacteria interact 
with the immune system through TNF-α, affecting the 
seizure threshold. Bacteroides has a role to digest and 
metabolize high-fat food and to regulate the secretion 
of IL-6 and IL-17 in dendritic cells (DCs), a process 
strongly associated with seizure severity of epileptic 
patients. Reduction in the Firmicutes, along with an 
increased level of the genus Bacteroides, is also related 
to the high production of SCFAs, which have antiepi-
leptic effects [5, 8, 16].

Concerns about the increasing incidence of degen-
erative diseases such as AD and MCI, their irrevers-
ible complications, and the disproportionate response 
to standard treatments have led to examining another 
treatment method, including the KD, in these patients. 
One study evaluated this diet for GM changes and clin-
ical improvement in patients. In the study by Nagpal 
R. et  al. 2020, MCI patients had a higher percentage 
of fungal families such as Sclerotiniaceae, Phaffomy-
ceteceae, Trichocomaceae, Cystofilobasidiaceae, Tog-
niniaceae, and genera such as Botrytis, Kazachstania, 
Phaeoacremonium, and Cladosporium. In contrast, the 
control group had fewer Cladosporiaceae and Mey-
erozyma. After KD treatment, an increase in Agaricus, 
Mrakia, and a reduction in Saccharomyces and Clavi-
ceps were reported [6].

Fungi and bacteria coexist symbiotically in the human 
gut, and their interactions can be impaired in the dis-
ease states. According to the studies, a complex eco-
logical co-regulatory network between them exists in 
a healthy person, which is disturbed in MCI. Different 
fungi play an essential role in the GM community sta-
bility and function, as seen in patients with MCI. Fungi 
like Meyerozyma, Wallemia, and Aspergillus correlate 
with several bacterial species in Firmicutes phylum and 
Bacteroides, Roseburia, and Eubacterium genera [3, 4, 6, 
41–43, 48–57]. These data suggest that the KD modulates 
the fungal composition of the gut, which can influence 
the GM and the GM-derived metabolites.
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In addition to the many treatment challenges associ-
ated with MS, immunomodulatory medications are the 
only treatments available to slow the disease’s progress. 
Many studies have reported that MS patients have an 
underlying dysbiosis caused by reduced biodiversity 
and concentrations of essential bacterial groups, such 
as Faecalibacterirum prausnitzii. According to the 
study by Swidsinski et al. 2017, KD’s effect on GM was 
biphasic. As mentioned in the study, first, bacterial 
diversity and concentration were reduced. After that, 
gut bacteria were restored at the end of the 12-week 
treatment period, and over time, they overpassed the 
baseline values [15, 27–39, 58–63].

An inherited disease known as GLUT1 DS disrupts 
glucose transport as a fuel supply for the brain, leading to 
seizures, impaired neurological development, and move-
ment disorders. According to Tagliabue A. et  al. [17], a 
survey was conducted on these patients evaluating KD’s 
effects on GM. After three months of KD, Desulfovibrio 
spp. increased significantly. All patients experienced 
relief from paroxysmal dyskinesia and progressive global 
resistance to physical effort [17]. The results are prelimi-
nary in GLUT1 DS and MCI studies. Therefore, further 
studies must be conducted to prove and corroborate the 
results [6, 17].

Changes in GM-derived metabolites and clinical outcomes
Following KD, we observed reduced fecal SCFA con-
centrations, including acetate, propionate, butyrate, and 
branched-chain fatty acids, and increased BHB, trimeth-
ylamine N-oxide, and N-acetylserotonin [9, 12–14].

The KD’s impact on the GM community alters the GM 
composition and metabolites. In several studies, metab-
olite changes have been examined, and their impact on 
neurological disease progression has been reviewed. Fer-
raris C. et al. 2021 read the effect of KD on GM-derived 
metabolites after a one-month KD diet treatment. Simi-
lar to this study, studies regarding GM in neurological 
disorders have also reported significant decreases in fecal 
SCFA concentrations, such as acetate, butyrate, propion-
ate, and iso-butyrate [12, 39–51, 63–67].

ASD is a neurodevelopmental disorder characterized 
by multiple impairments in social interaction, repetitive 
behaviors, and interpersonal communication. ASD is 
associated with metabolism dysregulation and disruption 
of immune function, according to studies. Researchers 
have also investigated the effects of KD on ASD patients. 
In a three-month pilot study conducted by Mu C. et  al. 
2019, KD was examined for its impact on these patients. 
In their research, ketones and other metabolites, includ-
ing 3-hydroxybutyrate, acetoacetate, acetone, and acetyl-
carnitine, increased their relative concentrations. Amino 
acid concentrations decreased, including glutamine, 

tyrosine, phenylalanine, histidine, and alanine. KD treat-
ment resulted in a significant reduction in chromium 
levels and an increase in nickel and selenium levels. 
There was a significant negative correlation between ace-
toacetate and the comparison score. The ADOS-2 over-
all score was negatively correlated with the social effect 
score, whereas chromium and creatine were positively 
correlated with the comparison score. N-acetyl serotonin 
negatively correlates with behavioral index, and acetone 
negatively correlates with social affect scores. Lee R. et al. 
2018, also assessed KD in ASD patients. Their findings 
showed that BHB serum levels significantly increased 
after three months of KD treatment. Based on the 
ADOS-2 score, they observed significant improvement 
in core autism characteristics. There were also substantial 
advancements in CARS-2 items related to imitation, body 
use, and fear or nervousness. There was no significant 
difference in restricted and repetitive behavior scores 
between patients [9, 14, 45, 47, 52–59, 68–76]. These two 
studies (one clinical trial and one cohort study) reported 
an increase in serum levels of BHB in ASD patients. Since 
both of these studies were conducted on children with 
ASD, the consistency of the results, despite the difference 
in the study design, is considerable [9, 14].

It is believed that the ketogenic state exerted by the KD 
in the presence of low carbohydrates promotes positive 
modulation, which increases and preserves brain func-
tion. Furthermore, a positive change has occurred due to 
the KD, replacing bacteria with anti-inflammatory and 
supportive effects. For instance, in the study conducted 
by Swidsinski et al., 2017, a decrease in the concentration 
of Faecalibacterirum prausnitzii as one of the reasons 
for dysbiosis was observed in MS patients. By secreting 
butyrate, F. prausnitzii promotes the preservation and 
maintenance of regulatory T cells and T helper 17 cells, 
preventing inflammation. Studies conducted on neuro-
logical disorders demonstrated an increase in F. praus-
nitzii concentration and clinical improvements after KD 
consumption [3, 4, 13, 15, 22, 71–76].

A strength of this study is that we included both cohort 
and clinical trial studies, which were conducted on all 
age groups, making it comprehensive. This study has 
some limitations too. Since KD application to neurologi-
cal disorders is a relatively new topic, few studies have 
been conducted in this field. Due to the small number of 
studies and heterogeneity in study designs and results, 
conducting a meta-analysis is impossible. In addition, 
most studies have been conducted on a limited num-
ber of patients for a short period. There have been stud-
ies in which patients started the KD regime along with 
their medications; as a result, it has been challenging to 
compare the effects of this regimen alone. Further studies 
with more patients and longer treatment and follow-up 
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periods are warranted. Age-matched control groups are 
also recommended in these studies.

Conclusion
Neurological diseases can ultimately affect human health 
through multiple mechanisms, including oxidative dam-
age, energy metabolism disorders, or inflammatory 
reactions. The use of the ketogenic diet in treating neuro-
logical diseases has been noticed recently. Its effects have 
been proven, especially in the treatment of drug-resistant 
seizures. Based on studies, these positive effects are due 
to the role of this regimen in the alteration of GM com-
position and their metabolites. In these studies, we found 
an increased in Proteobacteria, Bacteroides, Escherichia, 
Prevotella, Faecalibacterium, Lachnospira, Agaricus, and 
Mrakia genus and a reduction in Firmicutes, Actinobac-
teria, Eubacterium rectale, Cronobacter, Saccharomyces, 
Claviceps, Akkermansia and Dialister were reported. In 
addition, we noticed the reduction of fecal SCFA con-
centrations, including acetate, propionate, butyrate, and 
branched-chain fatty acids, and increased serum levels 
of BHB, trimethylamine N-oxide, and N-acetylserotonin 
after KD. The efficacy of KD in reducing relapse and 
developing diseases has been reported, and all studies 
stated improvement in clinical outcomes after the diet 
and modulation of composition and function of GM is 
considered as one of the underlying mechanisms of KD. 
The detailed mechanisms of KD for treating neurological 
diseases remain unclear; in some neurological diseases, 
such as epilepsy, AD, and PD, it can have a therapeutic 
effect. Conversely, it has a supporting role in other dis-
eases by helping to treat the disease and improve the 
patients’ symptoms and quality of life. KD demonstrates 
excellent potential in clinical application, but further 
exploration is needed. Future studies must elucidate the 
role of components in KBs and their therapeutic targets 
and related pathways to optimize the strategy and effi-
cacy of KD treatment in neurological diseases.
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