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Abstract 

Background:  Multivariable linear regression (MLR) models were previously used to predict serum pyridoxal 5′-phos-
phate (PLP) concentration, the active coenzyme form of vitamin B6, but with low predictability. We developed a deep 
learning algorithm (DLA) to predict serum PLP based on dietary intake, dietary supplements, and other potential 
predictors.

Methods:  This cross-sectional analysis included 3778 participants aged ≥20 years in the National Health and Nutri-
tion Examination Survey (NHANES) 2007-2010, with completed information on studied variables. Dietary intake and 
supplement use were assessed with two 24-hour dietary recalls. We included potential predictors for serum PLP 
concentration in the models, including dietary intake and supplement use, sociodemographic variables (age, sex, 
race-ethnicity, income, and education), lifestyle variables (smoking status and physical activity level), body mass index, 
medication use, blood pressure, blood lipids, glucose, and C-reactive protein. We used a 4-hidden-layer deep neural 
network to predict PLP concentration, with 3401 (90%) participants for training and 377 (10%) participants for test 
using random sampling. We obtained outputs after sending the features of the training set and conducting forward 
propagation. We then constructed a loss function based on the distances between outputs and labels and optimized 
it to find good parameters to fit the training set. We also developed a prediction model using MLR.

Results:  After training for 105 steps with the Adam optimization method, the highest R2 was 0.47 for the DLA and 
0.18 for the MLR model in the test dataset. Similar results were observed in the sensitivity analyses after we excluded 
supplement-users or included only variables identified by stepwise regression models.

Conclusions:  DLA achieved superior performance in predicting serum PLP concentration, relative to the traditional 
MLR model, using a nationally representative sample. As preliminary data analyses, the current study shed light on the 
use of DLA to understand a modifiable lifestyle factor.

Keywords:  Pyridoxal 5′-phosphate, Vitamin B6, Dietary pattern, Deep learning, NHANES, Multivariable linear 
regression
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Background
Vitamin B6 plays vital roles in numerous metabolic 
processes in the human body, including in the hemato-
logic, cardiovascular, and neurologic systems [1]. Pyri-
doxal 5′-phosphate (PLP) is an active coenzyme form 
of vitamin B6, functioning as an essential cofactor and 
regulator for various enzyme-catalyzed reactions [2]. 
However, although vitamin B6 status has been shown to 
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be closely related to dietary vitamin B6 intake in a labo-
ratory setting [3], in previous epidemiological studies, 
due partially to the nature of variation in diet and meas-
urement error of dietary assessment [4], dietary intakes 
of vitamin B6 and foods rich in vitamin B6 explained 
only a small portion of the variance in serum PLP [5–
7]. Knowing that dietary intake is complex, it has been 
generally acknowledged that there is a need to develop 
and refine methods of assessing dietary intake, focusing 
on the overall dietary pattern [8]. Examining the effects 
of overall diet takes into account nutrient interactions 
and allows for capturing diet-biomarker relations with-
out particular knowledge of the specific nutrient or food 
component involved [9].

Traditionally, multivariable linear regression (MLR) 
models are used for prediction in the health field, assum-
ing linear relationships between all predictors and the 
response variable. However, the human body is such a 
complex organism that the linear model may not pro-
vide the best fit. In contrast, machine learning technol-
ogy, one of the major approaches for artificial intelligence 
research, uses stunningly complicated networks of artifi-
cial neurons, designed expressly to create accurate mod-
els directly from raw data, being able to learn the task 
with little human instruction or prior assumptions. By 
optimizing loss functions, models find their weights or 
parameters automatically. According to the depths of the 
models, machine learning can be divided into two cate-
gories: “shallow” learning and deep learning. Due to the 
restriction of structures of “shallow” learning, deep learn-
ing has demonstrated better performances on different 
kinds of tasks, such as computer vision and language pro-
cessing [10, 11]. Recently, researchers have applied the 
deep learning technology to diabetic retinopathy screen-
ing [12], detection of lymph node metastases from breast 
cancer [13], identification of tuberculosis patterns [14], 
classification of skin cancer [15], and food image recog-
nition in nutrition [16–18]. However, those algorithms, 
focused on disease diagnosis and screening, were gener-
ally image-based [12–15]. To our knowledge, the feasibil-
ity of using deep learning technology for health outcomes 
in relation to modifiable lifestyle factors, such as nutri-
tional factors, has not yet been investigated.

In this context, we developed a deep learning algo-
rithm (DLA) to predict serum PLP concentration based 
on 1) dietary intake and dietary supplement use, to cre-
ate a dietary pattern; and 2) further including sociodemo-
graphic information (age, sex, race/ethnicity, education 
level, and the ratio of family income to poverty), life-
style factors (smoking status and physical activity), and 
other non-dietary variables (anti-hypertension medica-
tion use, cholesterol-lowering medication use, insulin 
treatment, anti-diabetes medication use, systolic blood 

pressure, diastolic blood pressure, glucose, glycosylated 
hemoglobin, body mass index, high-density lipoprotein 
cholesterol, low-density lipoprotein cholesterol, total 
cholesterol, and C-reactive protein) to maximize the pre-
diction in a sample of 3778 U.S. adults from the National 
Health and Nutrition Examination Survey (NHANES). 
We also developed an MLR model, using the same vari-
ables as used with DLA, and compared the R2 values 
between results using DLA and MLR for serum PLP 
prediction.

Methods
Study participants
The NHANES is a cross-sectional nationwide survey to 
assess health and nutritional status of the noninstitution-
alized U.S. population [19]. The current study was based 
on the NHANES 2007 to 2010 samples, because differ-
ent information was collected in each survey cycle, and 
these were the most recent cycles that had released the 
variables of interest. Analyses for this study were limited 
to adults aged 20 years and older, which the NHANES 
had set as the age restriction for participants to receive 
adult-specific questionnaires. After excluding partici-
pants with missing information on variables of interest 
(i.e., serum PLP concentration and potential predictors), 
n = 3778 participants were included in the current study 
(Supplemental Fig.  1). NHANES was approved by the 
Institutional Review Board of the National Center for 
Health Statistics. Informed consent was obtained from all 
participants.

Assessment of serum PLP (outcomes)
Serum vitamin B6, in the form of PLP, was measured by 
investigators at NHANES using reversed-phase high-
performance liquid chromatographic (HPLC) with fluo-
rometric detection at 325 nm excitation and 425 nm 
emission. Because chlorite post-column derivatization 
could oxidize PLP to a more fluorescent carboxylic acid 
form, post-column introduction of a sodium chlorite 
derivatization reagent was incorporated into the HPLC 
system to improve the PLP signal [20]. Quantification 
was based on analyte peak area interpolated against 
a five-point calibration curve obtained from aque-
ous standards. The mean coefficient of variation for the 
assay was 4.9% and the detection limit of the assay was 
0.3 nmol/L [21].

Assessment of potential predictors
Information on dietary intake was obtained using two 
24-h dietary recall interviews. The first 24-h recall 
interview was conducted in-person in the NHANES 
Mobile Examination Center (MEC) at the same time-
point with examination components and biospecimen 
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collection, and the second day was collected by telephone 
3 to 10 days later. Two well-trained dietary interviewers 
administered the dietary interview at each MEC com-
prising three sections: (a) dietary recall, (b) nutritional 
supplement and antacid use, and (c) post-recall [22]. 
Average dietary intake, based on the 2 days, were used in 
the current analysis. The U.S. National Center for Health 
Statistics was responsible for the sample design and data 
collection and U.S. Department of Agriculture (USDA) 
Food Surveys Research Group was responsible for the 
dietary data collection methodology, maintenance of the 
databases used to code and process the data, and data 
review and processing [23]. The foods and beverages in 
the dietary interview components were converted to the 
37 USDA food groups (Supplemental Table  1), based 
on the Food Patterns Equivalents Database (FPED). The 
FPED served as a unique research tool to evaluate foods 
and beverage intakes of Americans with respect to the 
2015-2020 Dietary Guidelines for Americans [24].

Information on dietary supplement use was collected 
after the 24-h dietary recall for foods and beverages, 
using a similar protocol. Information was obtained on 
all vitamins, minerals, herbals, and other dietary supple-
ments as well as non-prescription antacids that were con-
sumed during a 24-h time period (midnight to midnight), 
including the name and the amount of supplement taken. 
Daily vitamin B6 supplement intake was calculated using 
the NHANES Dietary Supplement Database [25].

Demographic variables (age, sex, race/ethnicity, edu-
cation level, and the ratio of family income to poverty), 
lifestyle factors (smoking status and physical activity), 
and information on medication use were derived from 
questionnaires in the home by trained interviewers, using 
the Computer-Assisted Personal Interviewing system. 
Education level was the highest grade completed by the 
participant, and was described as < 12 years (middle and 
elementary school), 12 years (high school) and > 12 years 
(college and graduate School). The income-to-poverty 
ratio reflected the ratio of an individual’s household 
income to the federal poverty level, adjusted for house-
hold size and composition [26]. Smoking status was 
categorized as never, former, or current smoking. Physi-
cal activity was categorized as below (< 150 minutes per 
week of moderate-intensity), meeting (150-299 minutes 
per week of moderate-intensity), or exceeding (≥300 min 
per week of moderate-intensity) the federal physical 
activity guideline recommendations [27]. Medication 
use included antihypertensive, antiglycemic, cholesterol-
lowering agents and use of insulin (Yes/No for each). Sys-
tolic and diastolic blood pressures were measured three 
times from the seated position. If a blood pressure meas-
urement was interrupted or incomplete, a fourth attempt 
was made [28]. The average of all available readings was 

used for analysis. Body mass index (BMI) was calculated 
as body weight (kg) divided by the square of height (m2). 
Blood triglycerides, high-density lipoprotein cholesterol 
(HDL-C), low-density lipoprotein cholesterol (LDL-C), 
and fasting plasma glucose were measured using a Roche 
Modular P chemistry analyzer. Glycosylated hemoglobin 
was measured on an A1c G7 HPLC Glycohemoglobin 
Analyzer (Tosoh Medics, Inc., 347 Oyster Pt. Blvd., Suite 
201, So. San Francisco, Ca 94,080.). C-reactive protein 
assays were performed on a Behring Nephelometer [29].

Statistical analyses
Statistical analyses and all the computations for the cur-
rent study were conducted with SAS 9.4 (SAS Institute 
Inc., Cary, NC) and Python 3.5 (Python Software Foun-
dation, Delaware City, DE). The deep neural network 
structure was constructed with PyTorch (Adam Paszke, 
Sam Gross, Soumith Chintala, Gregory Chanan) [30]. 
PyTorch is an open source machine learning library for 
Python, used for applications such as computer vision 
and natural language processing. PyTorch has Graphical 
Processing Unit (GPU) support on tensor computation 
and an automatic gradients computing system [31].

Simple random sampling was used to divide the labeled 
dataset into training and test datasets with PROC SUR-
VEYSELECT in SAS. The training set is a dataset of 
examples used for learning. By constructing a loss func-
tion based on the training set and finding a local (even 
global) minimum of the loss function, we can obtain 
good parameters or weights in the network to fit the 
training set. We assume that the test set followed the 
same probability distribution as the training set; if our 
model fits the training set, it also should fit the test set 
well. In general, there is no clear criterion for the ratio 
of training and test datasets. Samples are usually split, 
based on the data quality and sample size, with different 
ratios; the ratio of 90%:10% has been commonly used in 
previous studies [32, 33]. We held out 10% of the labeled 
dataset as the test dataset, which was used to determine 
the final model performance, and thus excluded from 
model development or tuning. In order to obtain a stable 
prediction model, we trained and selected a model using 
the remaining 90% as training data. Once the final model 
had been selected, we tested the performance on the 10% 
test sample, using R2 as the proportion of the variance 
in the dependent variable that was predictable from the 
independent variables. R2 is a function of the total sum 
of squares (SST) and the sum of squared errors (SSE) 
( R2

= 1−
SSE
SST  ). For both the DLA and MLR models, we 

developed two models: first, including food groups and 
vitamin B6 supplement intake and, second, including 
food groups, vitamin B6 supplement intake, and other 
aforementioned potential non-dietary predictors.
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DLA predication model
Deep neural networks are a class of models within the 
machine learning area which identify a nonlinear rela-
tionship between the input, x, and the output y [27]. Nor-
mally there are three types of layers in neural networks, 
the input layer, the output layer and the hidden layer (see 
Fig.  1 for an example). With an appropriate number of 
hidden layers, with certain nodes for each hidden layer, 
the neural network can be used to approximate the non-
linear function, y ≈ f(x). In our DLA model, we used a 
4-hidden-layer fully connected neural network with the 
width of 30 nodes for each layer. Each neuron was con-
nected by all the neurons in the previous layer (Fig.  1). 
In particular, the mathematical expression of the DLA 
model is following:

where x is the input data, P is the parameter set, namely, 
P = {Wi, θi}, i = 1, ⋯5, and σ(x) is the rectified linear unit 
(ReLU) activation function [34] which has the form of the 
following form:

Theoretically speaking, this neural network setup can 
approximate any dependencies between the input and 
the output, when the number of layers and nodes is large 
enough [35]. In particular, when the data have nonlin-
ear dependencies, neural networks are able to perform 
better than regression, which is designed to reconstruct 
only linear dependencies and to ignore the nonlineari-
ties. Moreover, regression models can be recovered by a 
simple neural network which only involves the input and 
output layers but no hidden layers.
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To find the optimal parameter set, we needed to solve 
an optimization problem to minimize the distance 
between the empirical data and the model prediction, 
namely,

which is the loss function in machine learning. Here 
{(xi, yi)| i = 1, ⋯n} includes the training data and labels, 
and n is the number of participants in the training set. 
To solve this optimization problem, we employed the 
Adam algorithm [36], an algorithm for first-order gradi-
ent-based optimization of stochastic objective functions, 
based on adaptive estimates of lower-order moments, as 
our optimization method. We chose 0.001 as the learn-
ing rate to prevent overshooting which means wandering 
around the lowest point, because the learning rate was 
too high for the model when applying a gradient-based 
optimization algorithm. To prevent overfitting, we used 
batch normalization [25] and dropout [37], with a prob-
ability of 0.5, as regularization—a method to prevent 
overfitting by adding the norm of weight parameters to 
the loss function.

MLR prediction model
Because we were only interested in the description of 
samples without making any inferential conclusion in 
this study, we developed two MLR prediction models 
using the training data, including dietary and non-
dietary predictors, as detailed above. To compare with 
the DLA models, we did not exclude any potential pre-
dictors in the MLR model based on their significant 
levels.

min
P
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n

n
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∣
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Fig. 1  The structure of neural network
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Sensitivity analyses
To test the robustness of our results, we conducted two 
sensitivity analyses. Because vitamin B6 supplement 
intake was strongly correlated with serum PLP con-
centration, we conducted subgroup analysis, stratified 
by vitamin B6 supplement use status (yes/no). We then 
included only variables identified by a stepwise regres-
sion model of the MLR (p = 0.5 for entry, and p = 0.1 for 
removal) in the DLA prediction model. Stepwise regres-
sion is a modification of the forward selection and back-
ward elimination technique. As in the forward selection 
technique, variables are added one at a time to the model, 
as long as the F statistic p-value is below the specified 
α. After a variable is added, however, the stepwise tech-
nique evaluates all of the variables already included in the 
model and removes any variable that has an insignificant 
F statistic p-value exceeding the specified α. Only after 
this check is made and the identified variables have been 
removed can another variable be added to the model. 
The stepwise process ends when none of the variables 
excluded from the model has an F statistic significant at 
the specified α and every variable included in the model 
is significant at the specified α.

Results
The mean age of the 3778 participants was 50.7 years, and 
53.0% were women. Mean ± standard error (SE) of serum 
PLP concentration was 65.6 ± 1.15 nmol/L, and 31.4% of 
participants used supplements that contained vitamin 
B6. Characteristics were similar between the training and 
test groups (P > 0.05 for all) (Table 1).

After training for 105 steps with the Adam optimization 
method, the highest R2 was 0.41 for the DLA and 0.15 for 
the MLR model in the test dataset using 37 food groups 
and vitamin B6 supplement use as predictors (Table  2). 
The R2 was improved slightly after further including 
other potential non-dietary predictors: the correspond-
ing R2 was 0.47 for DLA (Fig. 2) and 0.18 for MLR in the 
test dataset (Table 2). Similar results remained in the sub-
group analysis, stratified by supplement use status, and 
sensitivity analyses including variables identified by a 
stepwise regression model (Table 2).

Discussion
Using data from a nationally representative sample of 
American adults, we developed a DLA to predict serum 
PLP concentration based on dietary intake, vitamin B6 
supplement use, and other non-dietary factors. Com-
pared with the traditional prediction model from MLR, 
DLA resulted in R2 with twice as high.

Although we know of no published study using dietary 
patterns to predict serum PLP, the association between 
dietary vitamin B6 intake and serum PLP has been 

investigated previously. For example, one cross-sectional 
study (n = 198, mean age, 72 years) showed that vitamin 
B6 supplementation, but not dietary vitamin B6, was sig-
nificantly associated with serum PLP concentration [5]. 
Another cross-sectional study, including 1239 Puerto 
Rican adults, examined associations between consump-
tion of 15 vitamin B6 rich foods, vitamin B6 supplements 
and serum PLP concentration. Only vitamin B6 supple-
ments and ready-to-eat cereal were found to be signifi-
cantly associated with PLP [7]. In the current study, we 
examined the overall impact of dietary patterns on serum 
PLP concentration, not only to reinforce the concept pro-
posed in the latest American Dietary guidelines [38], but 
also to capture as much information as possible because 
vitamin B6 is present in many foods.

In the current study, the R2 of DLA for predicting PLP 
concentration was 0.47 in the test dataset, two times as 
high as that of MLR, which is traditionally used for pre-
diction. Some mathematical proofs of the approximation 
property of DLA could explain the reason why the DLA 
demonstrated better performances than the MLR. For 
instance, when any continuous function can be approxi-
mated by DLA with only one hidden layer, then the abil-
ity of fitting sample points of training set is guaranteed 
theoretically. MLR can only fit the linear distribution, 
which may be not suitable when the distribution of sam-
ple points is more complicated. As the application of arti-
ficial intelligence has been grown in the health field, there 
has been surprise at the extraordinarily performance of 
the state-of-the-art technology. However, to our knowl-
edge, these technologies have been mostly adopted to 
recognize images and make classifications. For example, 
the first study using DLA to detect referable diabetic 
retinopathy came out at the end of 2016 [12]. In this novel 
study, a deep convolutional neural network was trained 
using 128,175 retinal images, which were graded 3 to 7 
times by a panel of 54 U.S. licensed professionals, result-
ing in a mean area under the receiver operating curve 
of 0.99, with high sensitivity and specificity (sensitivity 
ranged from 90.3 to 97.5%; specificity ranged from 93.4 to 
98.5%) [12]. The results were straightforward because the 
images already contained necessary information required 
for the classification. The function computed disease 
severity from the intensities of the pixels in an image. In 
nutrition, deep convolutional neural networks have been 
used in the field of food image recognition to estimate 
food intake [16–18], serving as an alternative or com-
plementary approach to traditional questionnaire-based 
dietary assessment. Meanwhile, research on predicting 
a variable affected by various known and even unknown 
factors using artificial intelligence has just begun. More 
recently, applications of deep learning using data drawn 
by a commercially available device (e.g., smartwatch, and 



Page 6 of 9Ma et al. Nutrition Journal           (2022) 21:38 

smartphone) were conducted [39, 40]. Compared with 
image-based studies, those data-based studies showed 
more modest accuracy, with a sensitivity and specific-
ity below 70% for detection of atrial fibrillation [39] and 
a correlation of 0.81 for quantifying Parkinson disease 
severity [40], because of variability and noise in the data. 
Unlike some nutrients, either with limited food sources 

or in specific fortified food products (e.g., vitamin B12 or 
vitamin D), vitamin B6 is found in a wide variety of foods 
[41]. The diverse food sources of vitamin B6 increases the 
difficulty in accurate estimation of dietary intake, thus 
increasing the difficulty in the prediction of serum sta-
tus. In this context, we used serum PLP as an example to 
investigate the feasibility of the technology.

Table 1  Descriptive characteristics of participants in training and test datasets in U.S. adultsa

a Values are mean (standard error) adjusted for age and sex, or percentages
b The fasting glucose value in mg/dL can be converted to mmol/L by multiplying by 0.05551
c The cholesterol value in mg/dL can be converted to mmol/L by multiplying by 0.02586
d The C-reactive protein value in mg/dL can be converted to mg/L by multiplying by 10

Training Test P value

n 3401 377

Age, y 50.7 50.9 0.80

Women, % 53.5 49.1 0.10

Education, % 0.48

  Less than high school (< 12 years) 27.3 24.9

  Completed high school (12 years) 23.3 24.7

  More than high school (> 12 years) 49.4 50.4

Ethnicity, % 0.34

  Hispanics 23.1 27.0

  Non-Hispanic White 55.2 52.2

  Non-Hispanic Black 18.6 16.9

  Other races 3.2 3.9

Ratio of family income to poverty 2.57 2.48 0.35

Adherence to physical activity guideline recommendations, % 0.33

  Below (< 150 minutes a week of moderate-intensity) 11.3 13.0

  Meeting (150-299 minutes a week of moderate-intensity) 40.6 40.6

  Exceeding (≥300 minutes a week of moderate-intensity) 48.1 46.4

Smoking status, % 0.37

  Never smoking 54.3 54.9

  Former smoking 25.9 28.7

  Current smoking 19.9 16.5

Anti-Hypertension medication use, % 32.2 34.5 0.43

Cholesterol-lowering medication use, % 19.2 19.4 0.91

Insulin treatment, % 2.7 4.2 0.11

Anti-Diabetes medication use, % 9.9 11.4 0.41

Systolic blood pressure, mm/Hg 122 124 0.06

Diastolic blood pressure, mm/Hg 68 68 0.89

Glucoseb, mg/dL 108 108 0.74

Glycohemoglobin, % 5.72 5.69 0.67

Body mass index, kg/m2 29.0 28.7 0.46

High density lipoprotein cholesterolc, mg/dL 53.7 54.2 0.49

Low density lipoprotein cholesterolc, mg/dL 115.8 115.4 0.84

Total cholesterolc, mg/dL 194.4 194.8 0.86

C-reactive proteind, mg/dL 0.41 0.41 0.90

Daily vitamin B6 supplement, mg/d 3.73 3.59 0.89

Serum pyridoxal 5′-phosphate, nmol/L 65.6 66.6 0.81

Total energy intake, kcal 2019 2005 0.71
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A main strength of this study is that it is the first study 
to have applied artificial intelligence in the field of nutri-
tion assessment, shedding light on the importance of 
modifiable diet factors for prevention of diseases due to 

low vitamin B6 status. This is also the first study to exam-
ine the association between dietary patterns and serum 
PLP, reinforcing the concept of emphasizing overall eat-
ing pattern in the latest American dietary guidelines [38]. 

Table 2  R squares for pyridoxal 5′-phosphate prediction models, based on deep learning algorithm versus multivariable linear 
regression

a Variables include energy intake, vitamin B6 supplement, citrus/melons/and berries, other fruits, fruit juice, dark green vegetables, tomatoes, other red and orange 
vegetables, potatoes, other starchy vegetables, other vegetables, beans and peas (vegetables), whole grains, refined grains, meat, cured meat, organ meat, poultry, 
seafood high in n-3 fatty acids, seafood low in n-3 fatty acids, eggs, soy products, nuts and seeds, beans and peas (proteins), milk, yogurt, cheese, oils, solid fats, added 
sugars, and alcoholic drinks
b Variables in1 and also age, sex, education, ethnicity, ratio of family income to poverty, adherence to physical activity guideline recommendations, smoking status, 
anti-hypertension medication use, cholesterol-lowering medication use, insulin treatment, anti-Diabetes medication use, systolic blood pressure, diastolic blood 
pressure, glucose, glycosylated hemoglobin, body mass index, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, total cholesterol, and 
C-reactive protein
c Variables for 37-food groups, include added sugars, alcoholic drinks, cheese, milk, yogurt, fruit juice, other fruits, whole grains, oils, cured meat, legumes (proteins), 
nuts and seeds, poultry, seafood high in n-3 fatty acids, soy products, solid fats, legumes (vegetables), other vegetables, other red and orange vegetables, tomatoes, 
other starchy vegetables, and vitamin B6 supplement
d Variables for the dietary and non-dietary model include age, sex, ratio of family income to poverty, smoking status, systolic blood pressure, cholesterol-lowering 
medication use, glucose, body mass index, high-density lipoprotein cholesterol, C-reactive protein, alcoholic drinks, mile, yogurt, fruit juice, other fruits, refined 
grains, whole grains, oils, cured meat, legumes (proteins), nuts and seeds, poultry, seafood high in n-3 fatty acids, soy products, solid fats, legumes (vegetables), other 
vegetables, other red and orange vegetables, tomatoes, other starchy vegetables, and vitamin B6 supplement

37 Food groups and supplement 
variables includeda

Further including non-dietary 
variablesb

Deep learning 
algorithm

Multivariable 
linear regression

Deep learning 
algorithm

Multivariable 
linear regression

Training Test Training Test Training Test Training Test

All participants 0.46 0.41 0.21 0.15 0.43 0.47 0.25 0.18

Excluding users of vitamin B6 supplements 0.36 0.33 0.08 0.08 0.49 0.33 0.15 0.16

Including only users of vitamin B6 supplements 0.59 0.53 0.20 0.17 0.66 0.51 0.25 0.21

Including only variables identified by the stepwise modeld,e 0.45 0.41 0.21 0.15 0.52 0.38 0.25 0.18

Fig. 2  The relationship between serum pyridoxal 5′-phosphate concentration and predicted pyridoxal 5′-phosphate value based on deep learning 
algorithm (DLA)
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Additionally, the rich NHANES data set provided a valu-
able opportunity to perform analyses that include a com-
prehensive set of covariates, both to clarify findings and 
control bias.

On the other hand, the current study also has some 
limitations. First, approximately half of the variation in 
serum PLP was still not explained by the DLA model. For 
example, for low measured serum PLP (< 20 nmol/L), the 
predicted PLP values varied over a large range. However, 
even so, using DLA resulted in twice the R2 value com-
pared with the traditional prediction model using MLR. 
Moreover, there are inherent disadvantages in using two 
24-h dietary recalls as assessment of usual food intake 
for the participant [4]. To reduce the potential misclas-
sification, dietary intakes in NHANES were assessed 
on two non-consecutive days by experienced and well-
trained interviewers using a standardized protocol, cap-
turing more information on the day-to-day variation 
than a single 24-hour dietary recall. In addition, because 
genetic information was not available for this study, it 
is unknown how the predictability would change after 
integration of PLP-related genetic factors. Moreover, 
although our sample size was 3778, it was still considered 
relatively small for conducting deep learning technol-
ogy, which requires a large data set. In general, there is 
no defined principle for sample size selection. A sample 
size larger than the number of parameters is acceptable 
and the more parameters there are, the larger the sample 
size required. In the current study, the structure of our 
DLA was not overwhelmingly complicated, indicating 
that the sample size in our experiment was sufficient to 
generate acceptable results. Finally, there are limitations 
in generalizability to other settings and populations. The 
prediction model needs to be replicated in an independ-
ent external population. However, as a preliminary analy-
sis, these results provide valuable and relevant data in 
support of a new application of artificial intelligence for a 
modifiable lifestyle factor.

Conclusions
DLA achieved superior performance in predicting 
serum PLP concentration, compared to the traditional 
MLR model, supporting the feasibility of using artificial 
intelligence in nutrition research. Future studies using 
DLA with larger sample size, genetic information, and 
improved algorithms are warranted. Given that healthy 
lifestyles, including dietary patterns, can help people 
achieve and maintain good health and reduce the risk of 
chronic disease throughout all stages of the lifespan, the 
DLA approach may help to more accurately identify mod-
ifiable lifestyles variables at large scale, thereby clarifying 
opportunities for intervention to improve nutrition and 
public health.
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