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Abstract

profiles were analyzed by PCR array.

biomarkers of cord blood Th1 and Th2 responses.
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Background: Antenatal vitamin D5 (vitDs) supplementation significantly increases maternal and neonatal
25-hydroxyvitamin D3 (25(OH)Ds) concentration, yet the effect of an improvement in maternal-fetal vitamin
D status on the neonatal immune response is unclear.

Method: To assess the effect of prenatal vitDs supplementation on cord blood T cell function, healthy pregnant
Bangladeshi women (n = 160) were randomized to receive either oral 35,000 IU/week vitDs or placebo from 26 to
29 weeks of gestation to delivery. In a subset of participants (n = 80), cord blood mononuclear cells (CBMC) were
cultured, non-adherent lymphocytes were isolated to assess T cell cytokine responses to phytohemagglutinin (PHA)
and anti-CD3/anti-CD28 (iCD3/iCD28), measured by multiplex assay. In 12 participants, lymphocyte gene expression

Result: In supplemented group, increased concentrations of IL-10 (P < 0.000) and TNF-a (P=0.05) with iCD3/iCD28
stimulation and IFN-y (p = 0.05) with PHA stimulation were obtained compared to placebo group. No differences in
the gene expression profile were noted between the two groups. However, PHA stimulation significantly induced
the expression of genes encoding Th1 and Th2 cytokines and down-regulated a number of genes involved in T-cell
development, proliferation and differentiation of B cells, signal transduction pathway, transcriptional regulation and
pattern recognition receptors (PRRs) in the vitamin D group (vitD group).

Conclusion: Third-trimester high-dose vitDs supplementation in healthy pregnant women had balanced effects on
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Introduction

The importance of adequate vitamin D status during
pregnancy has been suggested by observational studies
demonstrating associations between low 25(OH)D3 and
adverse birth outcomes, childhood infections, and atopy
[1, 2]. Several studies have demonstrated that prenatal
vitD3 supplementation or vitD; intake during preg-
nancy was associated with reduced risk of wheezing
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and asthma in young [1, 3-5]. In contrast, no association
[6, 7] or negative effects of high vitamin D intake in preg-
nancy on the risk of eczema, asthma and wheezing in the
offspring have also been shown [8]. There is no consensus
on the cutoff value for vitamin D deficiency and the
optimum dosage for supplementation during pregnancy
remains controversial.

Vitamin D is hypothesized to be an important regulator
of immune and inflammatory responses [9]. Maternal
vitamin D status during pregnancy may affect the fetal
immune system and contribute to the risk of development
of immune-mediated diseases and infection in the off-
spring. Normal pregnancy is typically associated with a
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predominance of Th2- and Th3-type cytokine profile
and a relative suppression of T helper type 1 (Thl) re-
sponse in the mothers [10, 11]. Various in vitro studies
of the effects of vitamin D on the T-cell phenotype have
shown that active vitamin D3 (1,25(OH),D3) suppresses
production of Thl cytokines and IL-17 [12, 13] and
promotes Th2 responses [14, 15] and T regulatory cells
(Treg) to maintain a balance and prevent exacerbated
immune responses [16, 17]. However, it is unknown
whether vitD; induced Thl suppression and Th2 pro-
motion occur in vivo, particularly in the context of fetal
immune ontogeny.

We aimed to evaluate the effect of prenatal vitD;
supplementation on T lymphocyte activation pathways
and cytokine responses in cord blood. Earlier we have
shown in a double-blind, placebo-controlled trial, sup-
plementation with 35,000 IU/week of vitD; during the
3" trimester of pregnancy among Bangladeshi women
significantly increases the mean 25(OH)D3 concentration
in cord blood compared to the placebo group (103 versus
39 nmol/L) [18]. In a sub-set in the same trial cohort,
we studied the impact of vitamin D status on the ex-
pression profile of cytokines by stimulated T lymphocytes
and on T cell activation pathway as a key component of
adaptive immunity.

Methods

Study design and participants

The Antenatal Vitamin D in Dhaka (AViDD) study was
a randomized, double-blinded, placebo-controlled trial
to evaluate the effect of high-dose of vitD3 (cholecalcif-
erol) supplementation during 3rd trimester of pregnancy
on maternal and cord serum (25(OH)D3) concentration
and primary biochemical efficacy outcomes [18]. Briefly,
pregnant women were enrolled at the Shimantik Urban
Primary Health Care Project Maternity Centre, a non-
governmental facility that provides basic antenatal and
obstetric services in a low-income community. Data
collected from each participant included maternal edu-
cation, occupation, construction features of the dwell-
ings, gestational age at delivery, delivery mode, birth
weight and sex of babies. Inclusion criteria were preg-
nant women with gestational age of 26 to 29 weeks, age
range 18 to <35 years, currently residing in Dhaka, plans
to stay in Dhaka throughout pregnancy up to one month
post-delivery, and plans to deliver at the maternity
centre. Study participants were allocated to receive a
weekly dose of either 35,000 IU of vitD3 (Vigantol Oil,
Merck KGaA, Germany; vitD group) or placebo oil
(Miglyol oil, Merck; placebo group) until delivery. The
study was approved by two committees of icddrb, the
Research Review Committee (RRC) and the Ethical Re-
view Committee (ERC) (Protocol# PR-09058). The Johns
Hopkins Bloomberg School of Public Health (Baltimore,

Page 2 of 11

USA), and the Hospital for Sick Children (Toronto,
Canada). Written informed consent was obtained from
all eligible participants.

A total of 160 pregnant women were enrolled in
the original trial. The subset of women (n=80; 40
from placebo group and 40 from vitD group) selected
for the current study were those for whom adequate
CBMCs were available for stimulation assays for cyto-
kine analysis. For analysis of lymphocyte activation
pathways by PCR array method, we selected 6 partici-
pants from the vitD group and 6 from the placebo
group based on availability of complete data and adequate
CBMC counts.

Vitamin D status assessment

Serum 25(OH)D3; was measured by high-performance
liquid chromatography tandem mass spectroscopy
(LC-MS/MS), which showed that only 25(OH)D3 was
obtained in the serum samples, 25(OH)D, was not
detectable in any serum samples [18, 19]. Details of
the measurement procedure have been described elsewhere
[18, 19]. There is no standard classification of vitamin D
status based on 25(OH)Ds concentrations in cord blood;
thus, for the purpose of the present study we stratified the
participants into four groups based on serum 25(OH)D
concentrations as done earlier [20] :(1) >76 nmol/l (high);
(2) 50-75 nmol/l (moderate); (3) 30-49 nmol/l (low); (4)
<30 nmol/I (very low).

Cord blood collection, plasma and non-adherent lymphocyte
isolation

Venous cord blood was collected immediately after de-
livery and transferred to the icddrb laboratory in Dhaka
for same-day processing (within 2-18 h). Cord blood
plasma and CBMCs were separated from whole blood
by Ficoll-Paque (Amershan-Pharamcia Biotech, Sweden)
density gradient centrifugation. The isolated CBMCs
were re-suspended in RPMI 1640 medium (Gibco, Invi-
trogen, Grand Island, NY, USA) containing 10 % autolo-
gous plasma and cultured in tissue culture plates
(NUNC, Roskilde, Denmark) for 2 h to separate non-
adherent cells from adherent cells that stick to the plas-
tic surface of the tissue culture plates. The non-adherent
lymphocytes, which consisted predominantly of 70-75 %
of T lymphocyte (CD3), 20-23 % of B lymphocytes
(CD19) and 5-7 % of Natural killer cells (CD16) were
separated from adherent monocytes (CD14) (10-15 % in
total CBMC), and cultured in presence of stimulants (T
cell mitogen Phytohemagglutinin (PHA) or agonistic
antibodies to T-cell receptor).

Stimulation of lymphocytes
Stimulation with anti-CD3 and anti-CD28 antibodies
predominantly activates T lymphocytes. PHA activates T
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cells by binding to cell membrane glycoproteins, includ-
ing the T cell receptor (TCR) CD3 complex. One frac-
tion of lymphocytes was stimulated with anti-human
CD3e (purified mouse Monoclonal IgG1, Clone UCHT1;
R&D Systems, Minneapolis, MN 55413, USA), plus anti-
human CD28 (purified mouse Monoclonal IgG1, Clone
37407) (iCD3/iCD28) 5 pg/mL each), the 2nd fraction of
lymphocytes was stimulated with PHA (Sigma (St Louis,
MO, USA; 5 pg/mL), and the 3rd fraction of lympho-
cytes was cultured as control (without any stimulation)
in 96-well tissue culture plates (NUNC, Roskilde,
Denmark) for 48 h at 37 °C in 5 % CO2 incubator. After
incubation, all of the culture supernatant from each
fraction of lymphocytes was collected and used for
assessment of cytokine secretion by Cytometric Bead
Array (CBA). After PHA stimulation the stimulated
lymphocytes were harvested by centrifugation, stored
in RNAlater (QIAGEN GmbH, Hilden, Germany) for
further use for evaluating T lymphocyte activation
markers by PCR array.

Assessment of cytokines in lymphocyte supernatant

The Human Th1/Th2/Th17 Cytometric Bead Array
(CBA) Kit (BD Biosciences, San Jose, CA) was used for
measurement of cytokines in culture supernatant from
iCD3/iCD28- and PHA-stimulated lymphocytes. Cyto-
kines IL-2, IL-4, IL-6, IL-10, TNF-qa, IFN-y and IL-17A
were quantified. BD FACS Caliber II was used for acqui-
sition and CBA FCAP Array (Version 1.0.1) software
was used for result analysis. The lower limit of detection
(LOD) was 2.6, 4.9, 2.4, 4.5, 3.8, 3.7 and 18.9 pg/mL
for IL-2, IL-4, IL-6, IL-10, TNF-a, IFN-y and IL-17A
respectively. Data were expressed as ratio of cytokines
in the stimulated lymphocytes by unstimulated con-
trol lymphocytes. T helper 1 (Thl) cytokines include
IL-2, IFN-y and TNF-a and T helper 2 (Th2) cyto-
kines include IL-4, IL-6 and IL-10. IL-17A is secreted
by Th17 cells.

T and B cell activation pathway

Extractions of mRNA from both PHA-stimulated and
unstimulated lymphocytes were performed using RNeasy
Mini kit according to the manufacturer’s instructions
(Qiagen GmbH, Hilden, Germany). Using the RT2 First
Strand Kit (SA Bioscience, Life Technologies, Carlsbad,
California), ¢cDNA was prepared from mRNA in a
CEX96TM real time system (C1000TM Thermal cycler,
Bio-Rad Life Science Research, Hercules, CA). At least
1.0 pg RNA was added to ensure a maximum number
of positive calls in the PCR Array System. The cDNA
was mixed with an appropriate RT2 SYBR Green
master mix and the mixture was added to the wells
of RT2 Profiler PCR Array (SA Bioscience). PCR was
performed according to the following protocol: one
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cycle of 10 min at 95 °C followed by 40 cycles of
15 s at 95 °C, and 1 min at 60 °C. Values were
exported to a template excel file provided by SABios-
ciences for data analysis. The Cr values of genes were
normalized by the average Cr values of five house-
keeping genes [Beta-2-microglobulin (B2M), Hypoxan-
thine phosphoribosyltransferase 1 (HPRT1), Ribosomal
protein L13a (RPL13A), Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), Actin, beta (ACTB)]. The
fold change (2"(-Delta Delta Ct (AACT)) is the nor-
malized gene expression in test sample (stimulated
cells) divided by the normalized gene expression in
the control sample (unstimulated cells). Fold regulation
represents fold change results in a biologically meaningful
way, with a positive fold indicating up-regulation and
negative fold indicating down-regulation of the gene.
Gene expression data (ACT) within acceptable range
(25-30 threshold cycle values) were included in the
analysis.

PCR array was performed for the assessment of 84
predefined genes of T- and B cell activation pathway that
included genes involved in T and B cell activation, prolif-
eration and differentiation as well as genes regulating
Thl and Th2 development and T cell polarization.
Moreover, genes involved in the activation of macrophages,
neutrophils, and natural killer cells were also included in
this system. For each participant, gene expression data was
obtained for unstimulated and PHA-stimulated lympho-
cytes within a group; direct comparison between vitD and
placebo groups was not performed in the software pro-
vided by SABiosciences.

Statistical methods

Statistical analyses were performed using IBM SPSS
Statistics for Windows (version 20; Armonk, NY: IBM
SPSS corp.; 2011) and Stata/IC, version 13 (StataCorp,
Texas, USA). P values <0.05 were considered statistically
significant. Independent sample t-test was used to esti-
mate the mean difference of baseline characteristics. The
primary outcome measure for each participant was the
ratio of cytokine concentration in PHA- or iCD3/iCD28-
stimulated to unstimulated cell cultures. Data were
described by their ranges, mean and standard deviation.
Cytokine concentrations did not follow normal distri-
butions therefore cytokine data were normalized by
log transformation. Henceforth, cytokine concentra-
tion will represent normalized cytokine ratio. Linear
regression model was used to evaluate the influence
of vitD3 supplementation on cytokine concentrations
in vitD group compared to placebo. The model was
adjusted for covariates that were associated with bio-
logically relevant outcomes or those that changed the
effect estimate by more than 5 %. The potential covariates
were maternal age, occupation, education, gestational age,
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delivery mode, birth weight of infants, child sex and
baseline serum 25(OH)D; level. PCR array data were
analyzed in the software provided by SABiosciences
(www.SABiosciences. com/pcrarraydataanalysis.php) com-
paring stimulated versus unstimulated cells within a
group. The p-values were calculated based on Student’s t-
test of the replicate of 2”(-Delta CT) values for each gene
in the unstimulated and stimulated subjects within each
supplemental group (n = 6).

Results
Participant characteristics
In the current study, the mean age of women, maternal oc-
cupation, education, construction features of living abode,
gestational age, delivery mode and serum 25(OH)D3 con-
centration at baseline were similar among the pregnant
women in the vitD and placebo groups (Table 1). The
newborns in the vitD group were not significantly different
from those in the placebo group in birth weight and male
female ratio. The baseline demographic features of the par-
ticipants in the original study cohort (n = 160) were similar
to those in the present cohort (1 =280) as well as to the
PCR-Array sub-group (n = 12) (Additional file 1: Table S1).
Information for delivery mode was available for 147
out of 160 participants in the original study (92 %)
[18] (Additional file 1: Table S1). Ceasarean delivery
was high in participants of both the original cohort
(60 %, 88 of 147) and the present cohort (69 %, 55 of
80) and in <50 % cases the rationale for performing
caesarean deliveries was due to fetal distress including
reduced fetal movement and breech/transverse fetal
presentation (Additional file 1: Table S2). In the PCR
array group, 11 participants were delivered by C-section
while only one was delivered vaginally (Table 1).

Cord serum 25(OH)D3; concentrations were signifi-
cantly higher in the vitD group compared to the placebo
group, as expected based on the full trial results [18].
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When neonates were stratified into 4 categories based
on serum 25(OH)D;3 concentrations, 88 % participants
in the vitD group were in the high category as opposed
to 8 % in the placebo group (Table 2). Among the partic-
ipants included in the PCR-array sub-groups, all 6 neo-
nates in the vitD group were in the moderate to high
category (85.33 +16.0 nmol/L), while all placebo neo-
nates belonged to the low category (38.83 + 8.4 nmol/L)
(data not shown).

Cytokine concentrations in stimulated cord blood
lymphocytes

In the stimulation experiments, concentrations of all cy-
tokines except for IL-4 were above the LOD. More than
90 % of the participants from each treatment group ex-
hibited less than LOD for IL-4 concentration; thus, data
for IL-4 was not included in further analysis. Linear re-
gression analysis demonstrated higher concentrations of
IL-10 and TNF-« in the vitD group after iCD3/iCD28
stimulation compared to the placebo (Table 3). Similarly,
higher concentrations of IFN-y were obtained in the
vitD group after PHA-stimulation compared to the pla-
cebo group. No significant differences were observed for
the other cytokines.

When Thl-to-Th2 ratios were assessed using IL-10 or
IL-6 as the denominator (e.g. IL-2/IL-10, IFN-y/IL-10,
TNEF-a/IL-10), no significant associations were obtained
between vitD and placebo groups (data not shown).

Prenatal vitamin D supplementation and T and B cell
activation pathways

Within each intervention group, comparisons were
made between genes from unstimulated and stimulated
lymphocytes. In the vitD group, PHA stimulation of
lymphocytes significantly induced expression of genes
encoding Thl cytokines IFN-y, IL-2, IL-2 receptor
(IL-2R), Th2 cytokine IL-13 and IL-12RB2 [receptor

Table 1 Demography of the participants supplemented with vitamin Ds or placebo

Total group

Sub-group of PCR array

Variables vitD group (n =40)

Placebo group (n=40) p

vitD group (n=6) Placebo group (n=6) p

Mean £ SD Mean = SD Mean £ SD Mean = SD

“Maternal age, years 2243 +3.75 2285+ 147 06 21.67 £3.93 2017 147 04
“Gestational age at birth, week 39.16+2.38 3839+261 0.6 3997 +244 40.18 +2.24 0.9
bDelivery mode n (%)

Vaginal 13 (30 %) 12 (32.5 %) 038 0 (0.0 %) 1(16.7 %) 0.2

C-section 27 (70 %) 28 (67.5 %) 6 (100.0 %) 5 (833 %)
“Birth weight, gm 2865.25 +522.46 2865.50 +357.83 0.9 2916.67 +636.92 2843.33 + 308.65 0.8
“Male:female 16:24 18:22 04 33 2:4 1.0

Data expressed as means + standard deviations and or number with percentage in parentheses.
Student’s t test was used for calculating p values for maternal age, gestational age at birth and birth weight
PP values were calculated for delivery mode between two supplementation using xtest

Fisher Exact test was applied for comparisons between the two group
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Table 2 Concentration of 25(0H)D5 in baseline and cord blood

samples
25(0OH)D3 nmol/L Placebo (n =40) vitD (n =40) p-value®
Baseline 456+214 426+17.2 0495
Cord blood 36.8+16.2 101.2+299 <0.000
Stratification of 25(0OH)Ds
Baseline

<30 11 (27.5 %) 12 (30.0 %)

30-49 14 (35.0 %) 18 (45.0 %)

50-75 10 (25.0 %) 7 (17.5 %)

276 5(12.5 %) 3 (7.5 %)
Cord blood

<30 17 (425 %) 125 %)

30-49 17 (42.5 %) 125 %)

50-75 3(7.5 %) 3(7.5 %)

276 3 (7.5 %) 35 (87.5 %)

Data expressed as means + standard deviations and or numbers with
percentages in parentheses

?Independent sample t test was used to assess the comparison of serum
25(0OH)D3 concentrations between the two groups

for IL-12, that is up-regulated by IFN-y] compared to
unstimulated cells. There was also significant induc-
tion of CD2 [an adhesion molecule expressed on T &
NK cells that also acts as a co-stimulatory molecule],
CD40LG[primarily expressed on activated T cells; reg-
ulates B cell function, mediates B-cell proliferation
and immunoglobulin class switching], IRF4 [a tran-
scription factor essential for the development of Th2

Table 3 Regression analysis of cytokines in vitD group compared
to placebo group

Unadjusted Adjusted
Cytokine 3 (95 % Cl) p-value B (95 % Cl) p-value
Anti-iCD3/iCD28
IL-2 —-0.10 (-0.77,0.56)  0.76 —0.26 (-093,042) 044
IL-6 0.17 (=0.13, 047) 0.27 0.23 (-0.09, 0.54) 0.16
IL-10 0.33 (0.02, 0.65) 0.03 0.62 (0.44, 0.80) <0.000
TNF-a 0.00, 0.84) 0.05

(
(
041 (0.002, 0.81) 0.04 038 (
(
(

(i —
IFN-y 040 (-0.14, 0.93) 0.14 042 (-0.17, 0.95) 0.17
(- -

IL-17A° 0.23 (-0.06, 0.52) 0.12 0.24 (-0.08, 0.56) 0.15
PHA
IL-2 -042 (-1.13,029) 024 —-0.30 (=096, 0.36) 036
IL-6 0.17 (-0.13, 047) 0.27 0.19 (=0.11, 048) 0.21
IL-10 0.16 (-0.27, 0.58) 0.46 0.21 (=0.19, 0.62) 0.29
TNF-a  0.20 (-0.25, 0.65) 0.38 0.25 (-0.18, 0.67) 0.25
IFN-y 0.53 (-0.09, 1.15) 0.09 0.59 (-0.006, 1.17) 005
IL-17A° 015 (=051, 0.81) 0.65 0.21 (=045, 0.87) 0.53

Data were given as beta () and 95 % confidence interval; B, regression
coefficients. Adjusted for Delivery mode, gestational week and baseline
25(0OH)Ds level

Page 5 of 11

cells, IL-17 producing cells and IL-9 producing Th9
cell (associated with Th2 immunity)], CCR4 (Chemo-
kine (C-C motif) receptor 4 [preferentially expressed
by FOXP3+ Treg (Th2) cells] (Fig. 1a). Compared to
unstimulated control lymphocytes, PHA stimulation
significantly down-regulated many C-C chemokine re-
ceptors (CCR1, CCR2, CCR3 and CCR5), multiple
Toll-like receptors (TLRs)(TLR1, TLR2, TLR4, TLR6,
TLR9), CXCR4, CLEC7A (C-type lectin domain family
7, member A), SOCS5 (Suppressor of cytokine signal-
ing 55), ICOSLG (Inducible T-cell co-stimulator lig-
and), CD3D and CD3G (subunits in CD3-T Cell
Receptor complex), CD8B (B subunit on cytotoxic T
cells), CD81 (expressed on T lymphocytes), TGF-f,
IFNGR1, IFNGR2 (receptors of IFN-y), HLA-DR,
NCK1, NCK2, and histone deacetylases (HDAC4-9)
(Fig. 1b) (Table 4).

In the placebo group, no significant changes were
noted in the gene expression in PHA stimulated lym-
phocytes compared to un-stimulated cells (Additional
file 1: Table S3).

Discussion

We previously showed that supplementation with vitD3
during the 3rd trimester of pregnancy improved mater-
nal and cord blood vitamin D status [18] and reduction
of antibacterial peptide LL-37 in monocytes [20]. Here,
we report that the antenatal vitD3 supplementation re-
sulted in induction of both Thl and Th2 cytokines after
stimulation of cord blood lymphocytes. In the vitD
group, the gene expression profile in stimulated lympho-
cytes demonstrated down-regulation of genes involved
in transcriptional regulation, and components of the in-
nate immune response that are involved in recognizing
and defending against invading pathogen.

There is a scarcity of in vivo data in humans during
pregnancy showing effects of vitamin D supplementation
on neonatal immune function. In vitro studies have
shown that active vitamin D3 (1,25(0OH),D3) preferen-
tially inhibits expression of Thl cytokines while simul-
taneously inducing Th2 cytokines [9, 14, 15]. Again,
other studies have shown contrasting role or no prefer-
ential effect for vitD;. For example, in cultured human
trophoblasts, 1,25(0OH),D3 down-regulated IL-10 expres-
sion under normal and experimental inflammatory
conditions and directly inhibited TNF-a and IL-1p
stimulation of IL-10 [21]. Supplementation of healthy
women with oral vitD; for 6 months did not lead to
significant alterations in expression of IFN-y and IL-4
cytokines compared to placebo group, nor were there
any effects on transcription factors T-bet and GATAS3,
that regulate the Th1/Th2 fate of CD4'T cells [22]. The
present study demonstrated in vivo effects of prenatal
vitD3 supplementation on induction of not only Th2
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Fig. 1 Fold change of gene expression level after stimulation with phytohemagglutinin (PHA) in the vitD group. Genes increased or decreased in
the stimulated cells compared to the unstimulated cells by 22 were showed in the figure. Among 84 genes of T and B cell pathway. a only 8 genes
were upregulated, while (b) 21 genes were down regulated. Results were from 6 participants

A

cytokines but also Thl cytokines, without a clear pre-
dominance of either T cell phenotype. Similarly, in the
vitD group PCR array analysis demonstrated increased
transcript levels of Thl and Th2 cytokines as well as
transcription factor IRF4 that regulates development of
Th2, [L-17 and IL-9 producing cells.

Active vitamin D can inhibit in vitro proliferation and
differentiation of B cells into plasma cells as well as anti-
body production [23, 24]. Increased frequency of B cells
and antibody production has been reported in vitamin D
deficient women and their neonates (cord blood) com-
pared to the vitamin D sufficient group [16]. In the
present study, ICOSLG and IGBP1 genes that promote
B-cell proliferation and differentiation into plasma cells
were down-regulated, while, CD40LG that mediates B-
cell proliferation and immunoglobulin class switching
was up-regulated in the vitD group.

The findings of several responses to T cell stimulation
that were robust in the vitD group but non-significant in
the placebo group were consistent with previous

literature. For example, CCR4 is preferentially expressed
by naive Foxp3™ Treg cells which require high levels of
IL-2 for expansion in vitro [25]. Our findings of in-
creased expression of CCR4 and IL-2 in vitD group was
in accordance with data from in vivo studies showing
positive association between Foxp3™ Treg cells (number
and frequency) and serum 25(OH)D; [16, 26-28] but
not with active vitD; [27]. TGF-p plays an important
role in generation of Foxp3'Tregs from naive CD4'T
cells albeit in presence of low concentration of
1,25(0OH),D3 [25]. We found decreased levels of TGF-f3
transcripts in stimulated lymphocytes in the vitD group.

Klug-Micu et al showed that two parallel T-cell-
mediated mechanisms, IFN-y released by T cells and
induction of CD40L on T cells, trigger antimicrobial
responses against intracellular pathogens through a
common vitamin D-dependent antimicrobial pathway
[29]. We also found up-regulation of CD40L as well
as IFN-y expression in activated lymphocytes in the
vitD group.
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Table 4 Description of the functions of some of the genes in the vitD group as analyzed by PCR array method

Gene Description Fold up- or P-value Function
symbol down -regulation
APOA2  Apolipoprotein A-ll -393 0.001  Apolipoproteins function as structural components of lipoprotein
particles
CCR1 Chemokine (C-C motif) receptor 1 =501 0.055  Expressed on peripheral blood lymphocytes, specifically memory
T-cells; binds to multiple inflammatory chemokines
CCR2 Chemokine (C-C motif) receptor 2 -3.13 0.001  Expressed on activated memory T cells & B cells
CCR3 Chemokine (C-C motif) receptor 3 -554 0.007  Receptor for multiple inflammatory/inducible CC chemokines;
Expressed on Th1 and Th2 cells, CCR3 plays a role in allergic
reactions
CCR4 Chemokine (C-C motif) receptor 4 403 0001  Expressed on Th2 cells, preferentially by CD45RA* naive FOXP3*
Treg cells
CCR5 Chemokine (C-C motif) receptor 5 —4.14 0.029  Expressed on activated/memory Th1 lymphocytes.
D2 CD2 molecule 147 0.042  An adhesion molecule expressed on T & NK cells that acts as a
co-stimulatory molecule
CD3D CD3d molecule, delta (CD3-TCR complex)  —1.62 0.023  CD3 subunits involved in T cell activation/signaling through TCR
CD3G CD3g molecule, gamma (CD3-TCR complex) —1.76 0031  CD3 subunits involved in T cell activation/signaling through TCR
CDA40 ligand 423 0.008  Plays important role in T cell dependent immune response
CDA0LG Primarily expressed on activated T cells and regulates B cell
function, mediates B-cell proliferation and immunoglobulin
class switching
CD81 CD81 molecule -2.15 0026  mediate signal transduction events; on T cells CD81 associates
with CD4 and CD8 and provides a co-stimulatory signal with CD3;
CD81 expression by T cells enhances cognate T-B cell interactions
as well as intracellular activation pathways leading to Th2 polarization.
CcD8B CD8b molecule -1.82 0016 B subunit on cytotoxic T cells for cellular interaction
C-type lectin domain family 7, member A —19.84 0.020  Expressed on dendritic cells, monocytes, macrophages and B cells;
CLEC7A plays a role in innate immunity through pathogen recognition
receptor (PRR) can operate as a co-stimulatory molecule via
recognition of an endogenous ligand on T-cells, which leads to
cellular activation and proliferation. CLEC7A can bind both CD4+
and CD8+ T cells
Chemokine (C-X-C motif) receptor 4 -359 0.002  acts in lymphocytes chemotaxis; a chemokine receptor;
CXCR4 Expressed on T and B cells; central role of CXCR4 in confining
migrating B cells to the proper target sites or an important role
for CXCR4 in regulating homeostasis of B cell compartmentalization
and humoral immunity.
Histone deacetylase 4 -284 0.029 HDAC4 regulates bone and muscle development & promotes
HDAC4 healthy vision.
Specific and critical functions in transcriptional regulation & cell
cycle progression; have histone and nonhistone protein substrates
Histone deacetylase 5 -2.35 0.033  transcriptional regulation
HDACS
Histone deacetylase 9 -2.00 0.044  reduces transcriptional regulation after stimulation
HDAC9
Major histocompatibility complex, class Il, —4.44 0009 Expressed on B cells & helper T cells (activated CD4* CD25*
HLADRA DR alpha Treg cells)
Inducible T-cell co-stimulator ligand -1.64 0.031  Co-stimulatory signal for T-cell & B-cell proliferation; ICOS is
ICOSLG selectively expressed on Th2 cells.

ICOS, which is selectively expressed on Th2-polarized T cells,
predominantly enhance Th2 cytokine production, indicating that
co-stimulatory molecules influence the polarization process to
Th1 or Th2 phenotypes.
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Table 4 Description of the functions of some of the genes in the vitD group as analyzed by PCR array method (Continued)

IFNG Interferon, gamma 845
Interferon gamma receptor 1 -1.92
IFNGR1
Interferon gamma receptor 2 (interferon =331
IFNGR2 ~ gamma transducer 1)
IGBP1 Immunoglobulin (CD79A) binding protein 1 —145
Interleukin 12 receptor, beta 1 -2.12
IL12RB1
IL-12 receptor, beta 2 3.10
IL12RB2
IL13 Interleukin 13 582
IL2 Interleukin 2 7.55
IL2RA Interleukin 2 receptor, alpha 9.34
IRF4 Interferon regulatory factor 4 451
KLF6 Kruppel-like factor 6 -197
NCK1 NCK adaptor protein 1 -2.57
NCK2  NCK adaptor protein 2 -193
Suppressor of cytokine signaling 5 =301
SOCS5
TGFB1 Transforming growth factor, beta 1 -1.62
TLRT  Toll-like receptor 1 -7.36
TLR2  Toll-like receptor 2 —342
TLR4  Toll-like receptor 4 -7.78
TLR6  Toll-like receptor 6 -2.82
TLR9  Toll-like receptor 9 -2.71

0.024

0.050

0.001

0.012
0.024

0.002

0.040

0.002
0.000
0.000

0.000
0.002

0.015

0.001

0.043

0.000

0.068
0.055

0.004

0.079

Th1 cytokine; critical for innate and adaptive immunity against
viral and intracellular bacterial infections and for tumor control;
important activator of macrophages.

Activity of IFN-y is reduced due to low availability of IFNgR
Activity of IFN-y is reduced due to low availability of IFNgR

B cells proliferation and differentiation

Activities of natural killer cells and cytotoxic T lymphocytes; a link
between IL-2 and the signal transduction of IL-12 in NK cells.

(The protein encoded by this gene is a type | transmembrane
protein, which acts in signal transduction)

Contributes to the inflammatory response and host defense

expressed by Th2 cells, Has anti-inflammatory properties, acts in
Th2 responses

Increase proliferation, differentiation of effector T cells and T-reg cells
an important modulator of immunity

a transcription factor essential for development of Th2 cells, IL-17
producing cells & IL-9 producing Th9 cell associated with Th2 immunity

function in mitosis, meiosis and transport of cellular cargo

associated with bone metabolism, involved with actin cytoskeletal
remodeling, signal transduction

Nck1 and Nck2 are two highly related adaptor proteins
downstream of the TCR

The SOCS proteins negatively regulate cytokine and Toll-like
receptor- (TLR-) induced signaling in the inflammatory cells.

TLR signals are regulated by molecules such as TOLLIP and SOCS5
Expressed by macrophages and CD4+ T.

TGF-Beta is a potent immunosuppressor, all immune cell lineages
secrete TGF-Beta, it controls the proliferation, differentiation of these
cells. Perturbation of TGF-Beta signaling is linked to autoimmunity,
inflammation and cancer

Expressed on of macrophages, neutrophils, B lymphocytes

They recognize pathogen-associated molecular patterns (PAMPS)
that are expressed on infectious agents, and mediate the
production of cytokines necessary for the development of effective
immunity.

Expressed on macrophages, neutrophils, B lymphocytes, dendritic cells

B lymphocytes; monocytes/macrophages, neutrophils, dendritic
cells, Mast cells, Intestinal epithelium

Activated Treg cells, B lymphocytes, monocytes/macrophages,
Mast cells

Monocytes/macrophages, Plasmacytoid dendritic cells, B lymphocytes

Data provided only for those genes that had expression (ACT) within acceptable range (25-30 threshold cycle values)

Vitamin-D-mediated immunity provides feedback con-
trol that may prevent potential damage due to generation
of excessive inflammatory immune responses [9, 30]. The
down regulation of TLRs, C-C and C-X-C chemokine re-
ceptors in lymphocytes of vitD group likely reflects restric-
tion of inflammatory responses. VitD3 supplementation of
pregnant women at risk of preeclampsia led to a decrease

in TLR4 expression and a subsequent decrease in pro-
inflammatory cytokine secretion ex vivo [31]. Several in
vitro studies have shown that 1,25(OH),D3; can induce
hypo-responsiveness to pathogen-associated molecular
patterns (PAMPs) by downregulating expression of TLR2
and TLR4 on monocytes [32, 33]. Human corneal epithe-
lial cells when treated with vitDs (cholecalciferol) led to
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decreased expression of TLR3 and pro-inflammatory cyto-
kines [34]. Again, intake of active vitD3 by asthma patients
led to an increased expression of TLR9 but not other TLRs
by IL-10 secreting CD4" T cells. The study further showed
that, in vitro addition of 1,25(OH),D3 could induce expres-
sion of TLR9 on IL-10 secreting Treg cells from healthy
volunteers [35]. Expression of SOCS5 that negatively regu-
lates cytokines was also down regulated in the vitD group.
Cytokine signaling is contained by multiple tiers of control
where specific responses elicited by cytokine stimulation,
their threshold and magnitude are regulated by numerous
mechanisms [36].

HDACY9 has distinct effects on Foxp3 expression
and function. Inhibiting HDACs individually or in
combination may enhance Treg stability and suppres-
sive function [37, 38]. In the current study, we found
down-regulation of HDACs genes in lymphocytes in
vitD group that may have similar roles in promoting
Treg functions. Down-regulation of genes in the TCR
complex, T cell co-stimulatory molecules and major
histocompatibility complexes (T cell adaptive immun-
ity) in the vitD group suggests suppression of T cell
signaling pathway by vitamin D. Induction of CD2,
CD40LG and IL-12RB2 expression that are important
in T and NK cell function and inflammatory responses,
and down-regulation of receptors for these ligands suggest
balanced responses to in vivo vitD; supplementation that
would be expected to mitigate major downstream effects.
Similarly, induction of IFN-y expression was paralleled
with down-regulation of its receptors.

The study had several limitations. A high percentage
(69 %) of the study participants had caesarean delivery
and this may affect the generalizability of the study
findings even though data were adjusted with mode
of delivery. It is important to mention here that rates
of caesarean births in Bangladesh have increased from
2 % in 2000 to 17 % in 2011 [39]. According to a recent
large population based cross-sectional study (n =21,560)
in Bangladesh, 73 % of deliveries conducted in private or
charitable health facilities were performed by C-section,
more frequently without medical indications [40]. The
major reasons were- private providers were motivated
by financial incentives to conduct C-sections more
often than absolutely necessary; women of higher socio-
economic status were more likely to go for elective cae-
sareans [41], low cost of C-section procedure made it
affordable by majority of population. Caesarian and
facility based deliveries are heavily subsidized by the
government because emergency obstetric care plays an
important role in reducing maternal mortality rate in
Bangladesh [42]. The non-adherent lymphocytes were a
mixture of both T and B lymphocytes but only T cell
stimulants were used. Stimulation of CBMC with B cell
stimulant or TLR ligands such as LPS might have
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yielded a more comprehensive picture of vitamin D re-
lated cytokine functions. The low sample size for the
PCR array analyses may have limited our statistical
power to detect significant differences between the vitD
and placebo groups. In most of in vitro and ex vivo
studies and cell models, active form of vitD3 has been
shown to decrease TLR expression and consequently
inflammatory responses [30, 31, 33, 35]. We have not
determined the active form of vitD3 since the level of
this hormone is tightly regulated, has short half-life and
does not change with nutritional vitamin D status of
the body [43]. It is likely that the in vivo effects of vitD3
supplementation have been mediated by intracrine con-
version of circulating 25(OH)D3 to active form of vitD3
[44]. It has been reported that the anti-inflammatory
benefits of vitamin D and optimal immune function
was seen in individuals with 25(OH)D3; as high as
100 nmol/L [30, 45]. In the vitD group, 45 % of the
neonates had >100 nmol/L of 25(OH)D; levels which
was accompanied by modulation of immune responses
evident in the study.

Conclusion

Antenatal third-trimester supplementation with 35,000 IU/
week of vitDs had limited effects on Thl, Th2, Th17 and
inflammatory pathways in cord blood. In contrast to in
vitro models, the present observations generated from ex
vivo lymphocytes in the context of a randomized con-
trolled trial do not support the hypothesis that high-dose
prenatal vitD; supplementation favors fetal-neonatal Th2
dominance over Thl responses. Rather, possible modula-
tory effects of prenatal vitD; on the cord blood cytokine
expression appeared to be balanced.
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