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Abstract

allergic and auto-inflammatory disease.

While numerous changes in human lifestyle constitute modern life, our diet has been gaining attention as a
potential contributor to the increase in immune-mediated diseases. The Western diet is characterized by an over
consumption and reduced variety of refined sugars, salt, and saturated fat. Herein our objective is to detail the
mechanisms for the Western diet's impact on immune function. The manuscript reviews the impacts and mechanisms
of harm for our over-indulgence in sugar, salt, and fat, as well as the data outlining the impacts of artificial sweeteners,
gluten, and genetically modified foods; attention is given to revealing where the literature on the immune impacts of
macronutrients is limited to either animal or in vitro models versus where human trials exist. Detailed attention is given
to the dietary impact on the gut microbiome and the mechanisms by which our poor dietary choices are encoded into
our gut, our genes, and are passed to our offspring. While today’s modern diet may provide beneficial protection from
micro- and macronutrient deficiencies, our over abundance of calories and the macronutrients that compose our diet
may all lead to increased inflammation, reduced control of infection, increased rates of cancer, and increased risk for

Introduction

The Western diet is characterized by a high intake of satu-
rated and omega-6 fatty acids, reduced omega-3 fat intake,
an overuse of salt, and too much refined sugar [1]. Most
are aware that this type of eating, if not in moderation, can
damage the heart, kidneys, and waistlines; however, it is be-
coming increasingly clear that the modern diet also dam-
ages the immune system. The modern lifestyle is also
typified by reduced exposure to microorganisms, increased
exposure to pollutions, heightened levels of stress, and a
host of other exceptionally well reviewed variables that
likely contribute to immune dysfunction [2]. Therefore,
while dietary effects on immunity should not be thought of
in isolation, herein we focus on the body of evidence detail-
ing the mechanisms for the Western diet's impact on
immune function.

Total nutrient intake
Intake of adequate calories and micronutrients is vital
for optimal immune function. Deficiency in total calories
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and/or protein, as seen in parts of the world stricken
with starvation, severely reduces the immune system’s
ability to respond [3]. As one example, inflammatory
cytokines are themselves proteins, and thus infection
during starvation can lead to the production of these cy-
tokines at the expense of other proteins from blood and
tissues [3]. However, the obesity epidemic clearly out-
lines that today’s diet contains an over abundance of
nutrients [1]. While the Western world is not free from
micronutrient deficiencies, since this review aims at de-
tailing the immuno-nutrition of a Western diet not typ-
ically characterized by micronutrient deficiency, they are
thus considered outside the focus. Therefore, we encour-
age interested readers to seek out lovely review articles
on the immune impacts and mechanistic understandings
of dietary minerals and vitamins [3-6].

Adipocytes release inflammatory substances including
interleukin (IL-) 1, IL-6, and tumor necrosis factor
(TNF) [7]. In animal models, it appears that these signals
can act as false alarms that, over enough time and in
large enough amounts, cause the entire system to dial
down its responsiveness — analogous to a person remov-
ing a battery from a twitchy smoke detector that fre-
quently alarmed when no signs of fire were present [7,8].
When an actual infection comes along, the response
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may be delayed because the early warning system was si-
lenced — just as deactivating that smoke detector leaves
a home more susceptible to fire [7]. While human verifi-
cation is lacking, this concept is not unique to immunity,
for example anabolic steroid abusers down regulate their
steroid responses [9] while opioid abusers down regulate
innate opiate responses [10].

Obese individuals have fewer white blood cells to fight
infection and those cells they do possess have reduced
phagocytosis capability [11,12]. While a complex inter-
play of hormonal, metabolic, and immunologic processes
contribute to the biologic responses in the obese the re-
sultant immune dysfunction increases the risk of infec-
tions of the gums, respiratory system, and of surgical
sites after an operation [13-17]. Even routine interven-
tions like immunizations may not work as well simply
due to the inability of the vaccination needle to reach
the muscle tissue of the arm [18]. One possible mechan-
ism for obesity’s harmful effects on the immune system
could be the increased levels of leptin in the blood. All
mononuclear immune cells have a receptor for leptin
and activation leads to an increase in IL-1, IL-6, and
TNF [19]. Leptin stimulates NK cells, activates the tran-
scription  factor STAT3, and reduces the anti-
inflammatory T-regulatory (Treg) cells [20]. In general,
adiponectin has opposing effects on immunity and inter-
estingly the ratio of the two can predict the development
of coronary artery disease in diabetics [21]. Hypothetic-
ally, as with the development of resistance to leptin’s ap-
petite suppressing functions [19], patients with obesity
may, overtime, down-regulate the immune activation at-
tributable to leptin [7]. However intriguing the in vitro
impacts or correlation evidence of leptin may be, the
precise mechanism by which excess calories impact the
immune system has yet to be fully elucidated and will be
very difficult to separate from the underlying mecha-
nisms of the macronutrient sources of calories.

Eating disorders currently attributed to image obses-
sion are also an unfortunate part of modern dietary
habits and their immune impacts have gone relatively ig-
nored compared to obesity. While the nutrient deficien-
cies seen in eating disorders are not nearly as severe as
for the starvation seen in developing nations, subtle defi-
ciencies appear to lead to subtle immune defects [22].
Both anorexia and bulimia may reduce neutrophil and
monocytes numbers, T-cell number and function, anti-
bacterial complement proteins, as well as effects attrib-
utable to any micronutrient deficiency that may develop
[23]. Yet surprisingly, despite infection being a major
cause of death in patients with anorexia, most are infec-
tion free until the late stages of their disease; speculation
on the cause of this finding proposes that either the se-
vere iron deficiency and sequestration render the blood
a harsh environment for pathogen survival or that
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anorexic patients are, typically, deficient in carbohy-
drates and calories but may be only moderately deficient
in proteins and fat [22,23]. Further investigation into the
immune impacts of eating disorders is warranted.

Sugars, salt, and fats

Sugar

In vitro evidence suggest processed, simple sugars also
reduce white blood cell phagocytosis and possibly in-
crease inflammatory cytokine markers in the blood
[24,25]; of note, the author’s attribute their findings
more to the relative glycemic load of meals than the
sugars themselves and the most direct study on sugar’s
effect on lymphocyte function is now four decades old
and thus, repeat investigation employing in vivo and/or
modern techniques is required. Meanwhile, the complex
carbohydrate fiber (but not starches), such as that found
in fruits and vegetable, appear to reduce inflammation in
both humans [26-32] and mice [33]. The impacts of arti-
ficial sweeteners are less clear; provocative, yet highly
limited, evidence implicates saccharin and sucralose as
contributors to Crohn’s and Ulcerative Colitis via inter-
ference with homeostatic inactivation of digestive
proteases [34,35]. However this evidence is only epide-
miologic correlation and animal modeling, and lacks dir-
ect human investigation. Other studies looking at the
effects of sweeteners in cell culture suggest anti-
inflammatory effects in the blood [36,37]. Few studies
on newer sweeteners have been conducted, yet limited
cell-culture evidence on stevioside suggests anti-
inflammatory properties while improving phagocytosis
and mitogen responses for both T and B cells [38-40].
Potential immune impacts of the newest sweetener,
mongroside V, have not been directly investigated.
Therefore, definitive commentary on the immune im-
pacts of sweeteners will require further investigation.

Salt

Animal studies suggest that high salt in the diet might
also increase IL-17-mediated inflammation and could
worsen autoimmune diseases, although predictions on
how this may affect humans should only be seen as pre-
liminary [41,42]. There is however ample evidence on
how dietary fat affects the immune system.

Saturated fatty acids

One potentially harmful effect of fat is enhancement of
the prostaglandin system as it feeds into the arachadonic
and prostaglandin E2 (PGE,) pathways [43]. PGE, is
pro-inflammatory, increasing IL-17 production and
macrophage activation among other pathways [43]. Add-
itionally, dietary fats alter the lipids of the membranes of
immune cells, disrupting the immune functions [44,45].
Yet perhaps the most concerning aspect of modern
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dietary fat is its ability to directly trigger the inflamma-
tory process.

One of the first-line weapons the immune system de-
ploys against infection are molecules called Toll-like re-
ceptors (TLR). While complex in its workings, when the
immune system comes across a potential invader these
receptors are designed to evaluate if it is bacterial, viral,
or fungal. If the body finds evidence of any of these
organisms, the immune system can begin its attack im-
mediately while the adaptive immune system assesses
what specific pathogen it is facing [46]. One of the TLR
weapons, TLR4, is designed to sense bacteria. Unfortu-
nately the part of the bacteria TLR4 binds, lipopolysac-
charide (LPS), contains mostly saturated palmitic and
steric fatty acids [47-51]. Meaning that TLR4 can gener-
ate inappropriate signaling when exposed to certain sat-
urated fats if in too great of frequency, amount, or
homogeneity rather than in a more biological balance
and dosage. Any resultant, abnormal signaling may lead
to a misguided attack upon saturated fat when it is per-
ceived as a bacterial invader [9,47-54]. The resulting
inflammation in the gut can lead to a break down of bar-
riers, allowing harmful substance to leak from the gut
into the blood stream and contribute to immune dys-
function that worsens infection control [52,54,55]. Con-
sistent with these in vitro and animal models, studies in
humans reveal down regulation of TLR4 and increased
LPS translocation occurring within hours of a bolus of sat-
urated fat [54,56], while polymorphisms reducing TLR4
functioning are relatively protective against dyslipidemia,
coronary artery disease, and metabolic syndrome [57,58].
Saturated fats interact with another bacterial receptor,
TLR2 and its co-receptor CD14 (which is shared with
TLR4), and thus may impact infectious outcomes for
both Gram-negative infections such as E. coli as well as
Gram-positive infections like Staph. aureus and have
even be implicated in coronary artery disease pathogenesis
[49,52,59,60].

Omega-6 fatty acids

While saturated fats are the most inflammatory [50,61,62],
overabundance of omega-6 (n-6) poly-unsaturated fats,
such as those found in most cooking oils, have also been
implicated in immune response through several mech-
anisms including effects on TLR4 [53] and serving as
precursors for inflammatory mediators [63-67]. However, a
recent review of human trials seems to undermine evidence
supporting n-6 intake increases inflammation [68]. The
meta-analysis found the only measured mediator that was
significantly altered by an increase in dietary linoleic acid
was PGE, and concluded that the lack of detectable impact
in human clinical trials indicates that the cell-culture and
animal based evidence against n-6 fails to accurately re-
flect the complexity of human physiology. However, one
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confounder shared by many of the clinical trials investigat-
ing the immune impacts of fatty acids may be their exclu-
sion of unhealthy subjects and subsequent lack of disease
context. While retrospective studies are limited in their
own ways, an intervention study investigating an ubiqui-
tous exposure like dietary n-6 that excludes everyone with
pre-existing inflammation may be excluding the biologic-
ally susceptible portion of the population and thus may be
predestined to find no impact of their intervention; while
the lack of baseline inflammation in clinical trails could al-
leviate the concern for omega-6 as a universal inducer of
chronic inflammation, since these trials occur in the ab-
sence of either infectious challenge or underlying inflam-
matory disorders they make no comment on potential for
n-6 intake to impact the risk for, control of, or inflamma-
tion during, acute pathology. Additionally, clinical trials
involving n-6 have yet to measure inflammatory markers
that are downstream of the elevated PGE, (such as IL-17
and the Th17 pathway) [43] or directly investigate the
TLR4 axis, and instead focus on the more traditional Thl
markers of TNF, C-reactive protein (CRP), or cardiovascu-
lar disease [69]. Furthermore, inflammation limited to the
small bowel may not elevate typical blood inflammatory
markers that are measured in these clinical trials despite
imparting pathology [70]. Thus, further investigation into
the immune impacts of omega-6 will be needed before
any definitive connection between the provocative in vitro
findings and human disease pathology can be stated.

Omega-3 fatty acids

The immune impact of trans unsaturated fatty acids
(trans fats) have gone under investigated whilst re-
searchers focus on their deleterious cardiovascular ef-
fects, however one study found an increase in IL-6 and
CRP but only in the overweight female subgrouping
[71]. In contrast, omega-3 (n-3) poly-unsaturated fats
are generally associated with anti-inflammatory effects
[63,72-74]. Dietary n-3 may have beneficial effects on a
variety of conditions with inflammatory components,
such as atherosclerosis and cardiovascular disease [73],
inflammatory bowel [63], and allergic diseases [75,76].
Maternal intake of n-3 during pregnancy protects
against the development of allergic and inflammatory
disease in infants and children whereas diets rich in
saturated and/or n-6 fats were associated with an increased
risk [75,77]. Furthermore, n-3 directly interacts with tran-
scription factors such as NFkB and PPAR-y to down-
regulate the expression of pro-inflammatory genes [63,73]
and inhibits activation of TLR4 [48]. Omega-3 may further
regulate the immune response through resolvins and
protectins, anti-inflammatory mediators synthesized from
eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) [72,78-80]. These mediators reduce inflammation-
induced neutrophil infiltration, promote the scavenging of
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inflammatory chemokines [79], and enhance macro-
phage phagocytosis to clear apoptotic cells [72]. Animal
models also suggest omega-3 serves as an anti-
inflammatory balance to modulate TLR2- and TLR4-
dependent inflammation [45,81,82]. Thus, another po-
tential contributor to modern diet-induced immune
dysfunction may be the increased consumption of
omega-6 in lieu of omega-3 fatty acids [1].

Gluten

Recent animal and cell-culture models have found that
elements in gluten can stimulate inflammation through
TLR4 [83]; while these findings are afar from conclusive
and require human correlation, they do conjure intri-
guing speculation given the current gluten-free dietary
trend. This mechanism, even if eventually validated in
humans, is in contrast with the reported primary mech-
anism of celiac disease; in celiac sprue, people with a
very specific genetic pre-disposition have an error in glu-
ten processing that leads to a different and more severe
kind of immune activation. Dietary gluten is modified by
tissue trans-glutaminases and, normally, proteins are
digested by antigen presenting cells (APC) such as den-
dritic cells or B-cells; the proteins are then presented on
a major histocompatibility complex (MHC) to T-cells for
evaluation and, if deemed foreign, induce immune
activation. In patients with celiac, a particular MHC
receptor, either HLA-DQ2 or HLA-DQS8, allows the
processed gluten to act as a sort of super-antigen,
binding the APC to the CD4+ T-cell without going
through normal processing; this inappropriately acti-
vates the T-cell and results in inflammation and symp-
toms [84-87]. However, HLA-DQ2 and HLA-DQS8 are
found in approximately 40% of the US population and
yet only roughly 1% of the US carries the diagnosis of
celiac [88,89]. Therefore, some additional undiscovered
mechanisms as well as genetic and/or environmental
risk factors must be present.

The microbiome and inheritance

The notion that diet, stress, and environment can, for
better or worse, imprint upon the bowel has been
around since the ancient Egyptian pharaohs [90]. How-
ever, only recent focus and technologic advances have
allowed accurate elucidation of the mechanisms by
which our lifestyle impacts our microbiome and leads
to dysbiosis. In the gut (and on the skin), there is an
optimal, albeit not yet fully elucidated, balance of bac-
terial species. Some strains of bacteria are needed to
digest dietary fibers [91] while others produce valuable
nutrients like vitamin K [92]. Beneficial bacteria aide
their hosts by occupying space and/or modifying the
microenvironment in ways that prevent harmful bac-
teria from gaining a foothold [91]. More importantly,
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the commensal flora provides a type of training to the
immune system. Like a sparing partner in boxing, the
immune system’s interactions with the normal com-
mensal flora provides an education that is indispens-
able when a pathogenic opponent is encountered. The
current understanding on how dietary fats alter the
microbiome include TLR4-dependent induction of
local inflammation leading to altered host environ-
ment, shifts in immune cell membrane functions, and
changes in nutrient availability favoring some organ-
isms over others [47,52,93] (Figure 1A). Dietary simple
sugars appear to lead to dysbiosis directly through
changes in local nutrient concentrations and bacterial
functions that may favor harmful taxa over the benefi-
cial commensals [92,94-103]. Interesting preliminary
culture-based and animal research has shown the gut
microbiome to possess the ability to metabolize the
artificial sweeteners considered otherwise non-caloric
for humans. While results must be interpreted cautiously,
gut bacteria can process sweeteners into various short-
chain fatty acids (SCFA) that hold a wide array of po-
tential consequences [104]; while some SCFA may be
beneficial, their production may shift the bacterial bal-
ance [105,106], may be processed into absorbable
byproducts that provide calories, and interestingly may
activate the TLR4 pathway [104,107].

What is perhaps of larger concern is that the harmful
effects of diet can actually stretch across generations. A
mother’s diet may potentially shape her child’s flavor
preferences even before birth, potentially skewing their
palette towards anything from vegetables to sugary
sweets in ways that could influence subsequent pro-
pensity for obesity and/or unhealthy dieting [108]. In
addition, children inherit their microbiome from their
mother mostly through parturition but also during
breast-feeding and development until the bacterial bal-
ance matures around two to four years of age [92,109].
However, recent evidence suggests that the micro-
biome may also be seeded into the unborn fetus while
still in the womb [109,110] (Figure 1B). When the
mother’s diet causes a harmful imbalance of her bac-
teria, she passes this imbalance on to her child and
thus fails to present the ideal commensals for a proper
immune education during her child’s most critical de-
velopmental window [52]. This developmental dysbio-
sis leaves the offspring’s immune system poorly trained
to fight off infections and encourages autoimmune and al-
lergic diseases [52]. In mice, high dietary saturated fat solely
during lactation led to a pro-inflammatory milk via a
TLR2/4-dependent but microbiome-independent manner,
furthering that saturated fat has additional direct harm to
the newborn beyond the indirect harm steaming from dys-
biosis [111]. Just as loss of honeybees from orchards or
addition of an invasive species to a lake creates significant
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harm for the surrounding biosphere, so too it appears that
small shifts in our microbiome caused by today’s unhealthy
diets can reverberate through human health.

However, lest fathers believe that their diet does not
impact the offspring, paternal epigenetics related to
methylation of DNA and histones can also be inherited
by the offspring and could alter early development of the
immune system [52]. Epigenetic changes in DNA are, in
effect, cellular memory; these changes prevent dividing
pancreas cells from becoming cells of the kidney or any
other organ [112]. This memory is so essential that
many neoplasms begin with a cell’s loss of the epigenetic
memory learned during embryogenesis [113,114]. Since
the information encoded upon DNA is passed from

parent-to-child and even potentially from parent-to-
grandchild, cells that learn bad habits like ignoring signs
of infection or over-reacting to antigens could combine
with microbiome shifts to further worsen a child’s im-
munologic development [112,115,116]. The degree to
which shifts in the microbiome can affect epigenetic
changes in DNA, and vice versa, is currently not fully
understood.

In addition to altering TLR-mediated inflammation and
potentially DNA epigenetics, a mechanism by which alter-
ation in microflora may drive immune-mediated disease
involves the gut bacteria’s effect on regulatory T-cells
(Tregs), the cell tasked with keeping the immune system
in balance during both inflammation and homeostasis
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[117]. Alterations in the microbiome have been shown in
both mice and (to a less extensive degree) humans to
affect Treg development [118-122], and reduction in Treg
signal is associated with worse outcomes in infection con-
trol [123], autoimmunity [124,125], allergic sensitization
[126], and has been, more controversially, associated with
cancer risks [127-129]. Recent mouse work has also shown
transplanting the gut flora from allergic mice to wild type
mice can significantly alter oral allergic sensitization [130],
indicating direct effects of the gut flora on immune disease.
Therefore, dietary choices that alter gut microbiome likely
alter systemic responses through changes in the number
and function of regulatory T cells.

Unraveling which specific bacterial strains are either
the protectors or pathogens has not yet been elucidated
in either mice or humans, however the field of micro-
biota research has many informative discoveries. The de-
sire to foster a healthy microbiome is the driving force
behind the therapeutic use of probiotics. Some studies
have shown a positive impact for probiotic use including
numerous and well reviewed immune beneficial effects
of Lactobacillus species including alleviating traveler’s
diarrhea, reducing respiratory infections, and serving as ad-
junct treatment for allergic rhinitis, asthma, and atopic
dermatitis [116]. Supplementation with various Lactobacil-
lus, Lactococcus, and Bifidobacterium species reduce the
rate and severity of childhood atopic dermatitis when fed to
pregnant women during the later weeks of gestation [131].
Additional studies have made use of transgenic bacteria
producing the anti-inflammatory cytokine IL-10 to aide
Crohn’s treatment [132] and even found relief of anxiety
and depression through bacteria that naturally produce
serotonin [133,134]. Evidence outlining associations be-
tween natural shifts in the microbiome and impacts on hu-
man health is also plentiful. In general, increased numbers
Firmicutes relative to Bacteroidetes is associated with an in-
creased incidence of allergy, asthma, and obesity [135]. As
stated, processed sugars and saturated fats encourage dys-
biosis [52,92] while complex carbohydrates encourage an
anti-inflammatory microbiome and discourage growth of
infections from Clostridium difficile [92]. Intake of omega-3
increases ratios of Blautia species and increases levels of
both colonic and blood IL-10 in mice, although a direct link
between the two was not established [136]. Reductions in
Blautia were found in children with type-I diabetes [137]
and, among other changes, was associated with increased
incidence of colorecal cancer in both humans [138] and
mice [139]. However, high levels of Blautia were seen in
human patients with inflammatory bowel disease [140],
possibly revealing differences between human and mouse
biology or perhaps representing a natural attempt to restore
homeostasis. Reduction in Eubacterium is associated with
increased incidence of Crohn’s disease [141] while in-
creased presence is associated with both irritable bowel
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syndrome [142] and inflammatory bowel disease [143].
Meanwhile, Clostridium coccodies and C. leptum are pro-
tective against inflammatory bowel disease [92]. Furthering
the complexity is the notion that any specific taxa altered
by diet may represent a so-called “keystone species”, a spe-
cies exerting greater effect than their numbers would sug-
gest. As such, we cannot exclude any shift in the gut
microflora as the etiology of immune alterations.

However, any hope for long-term benefits from probiotics
may be limited by the need for dietary modification.
Gordon and colleagues demonstrated that alterations in the
mouse gut microbiome could prevent obesity, however
these effects were dependent upon changing from a high-
fat, low-fiber Western-style diet, to a healthier standard
mouse diet [144]. While these findings are limited to mice,
they raise a concern that taking probiotics may not be of
benefit if the patient fails to eat a healthy diet. Additional,
recent mouse studies [145] investigating how consumption
of red meat may accelerate cardiovascular disease and in-
flammation in humans [146,147] suggest an additional and
potentially serious limitation on probiotic supplementation.
Dietary L-carnitine and choline, compounds abundant in
red meat, are metabolized into trimethylamine-N-oxide
(TMAO) by way of some normal gut commensals; in mice
TMAO enhances atherosclerosis through disrupting chol-
esterol metabolism and foam-cell macrophage activity
[145]. This may suggests that researchers cannot assume
the safety of probiotic supplementation since bacterial spe-
cies providing benefit to healthy individuals eating a healthy
diet may hold the potential to become pathogenic when ex-
posed to an unhealthy diet; however, like all studies limited
to mice, human correlation will be needed. The benefits of
dietary modification over supplementation is furthered by
evidence showing that dietary supplementation does not in-
crease longevity, indicating that probiotics and other com-
mercial interventions such as tea or berry extracts are
unlikely to counteract poor dietary habits [148]. Much work
remains before the understanding of the effects of dysbiosis
in humans reaches that of mice, however while definitive
statements may be lacking, the preponderance of current
evidence strongly suggests that the gut microbiome is a
major contributor to human health and disease. The effects
of macromolecules and immune function and dysbiosis are
summarized in Figure 2.

Immuno-nutrition in cancer

Although dietary factors are thought to account for up
to one-third of cancers in Western nations [149], the
complexity of immuno-nutrition is well highlighted in
the research relating to cancer prevention. A typical
meal may have thousands to bioactive compounds [150],
distinguishing the effects of one from another is made all
the more difficult by evidence that compounds may syner-
gize or inhibit each other in respect to the development of
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neoplasms [151,152] as well as possible confounding by
other environmental exposures such as smoking and infec-
tions (H. pylori for stomach [153], hepatitis B and C for
liver [154], and Human-papilloma virus for cervical [154]).
In general, chronic inflammation is associated with an in-
creased risk of cancer [155], whether this is due to direct
cellular damage, the previously discussed resultant down
regulation of immune responsiveness, or a combination is
unknown. There are associations between oral and esopha-
geal cancers and high intake of alcohol, tobacco, and of
scalding hot food or drinks [156]. Colon cancer risk appears
to be worsened by high intake of red meat, salt-preserved
meat, and fat, although the data is not completely conclu-
sive [157-159]. Excessive intake of alcohol is associated with
cirrhosis-induced liver cancer and is a risk factor for breast
cancer [149,160]. Evidence on dietary risk factors for pan-
creatic, lung, prostate, and kidney are more controversial,
but have been exquisitely reviewed [149].

Palmitic acid may potentiate iron-mediated toxicities
and increase the rates of DNA mutations while inhibit-
ing the normal apoptotic pathways [161-163]. Dietary in-
take of the saturated palmitic and steric fatty acids as
well as the omega-9 oleic acid, may be independent risk
factors for the development of colon cancer [164]. Sim-
ple sugars were thought to heighten cancer risk through
several well-reviewed in vitro mechanisms [165], how-
ever more recent clinical analysis has not shown an in-
creased risk of cancer attributable to sugar intake and
suggests the original findings are more likely related to
total caloric intake or glycemic load [166-168]. There is
however, convincing evidence that obesity itself increases
the risk of cancers of the breast, uterus, colon, esopha-
gus, and kidney [169-171].

There is some evidence suggesting anti-tumor proper-
ties for vitamin E [172-175], vitamin D [176], and selen-
ium among others [177]; the details of which have been
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well reviewed [150,178,179]. Meanwhile, initial excitement
regarding pre-operative supplementation with omega-3
fatty acids improving outcomes in patients undergoing
gastrointestinal cancer surgery [164,180] and for beta-
carotine as a therapeutic in lung cancer has lessened after
failures in double-blind follow up trails [181-183]. Overall,
recent failed investigations into nutritional supplementation
and cancer prevention may have weakened the enthusiasm
for use of synthetic multivitamins in the prevention of can-
cer [182-185], perhaps indicating that the beneficial effects
seen with increased natural consumption of these products
[179,186-189] is due to bioactive compounds other than
the measured vitamins or, more likely, that there are differ-
ences in how isolated synthetic molecules behave outside of
the context of the intact food product. Not that use of sup-
plements for other goals is unwarranted (such as iron for
anemia or calcium and vitamin D for bone health) but for
immune health, it appears whole dietary sources harbor the
truly beneficial properties.

The exact mechanism of how any individual dietary
element impacts cancer development is far from fully
understood. Many of the reportedly protective vitamins
and minerals share anti-oxidant properties, suggesting a
mechanism more related to protection of DNA from
damage than altered immune function [190-193]. Diet-
ary modifications of the epigenetic methylation silencing
of tumor suppressor and promoter genes have also been
implicated [194,195]. Additionally, a number of associ-
ation studies in humans and mice have linked the devel-
opment of colon cancer to dysbiosis, particularly an
increase in S. bovis and certain adhesive/invasive strains
of E. coli [196-199]. Yet, while the role in, and mechan-
ism for diet-induced immune dysfunction in cancer de-
velopment cannot be outlined declaratively, given the
association of neoplasms with certain dietary choices it
seems unlikely that diets that worsen infection and/or
induce chronic inflammation will be benign.

Genetically modified (GM) foods

Another area of concern involves genetically modified
organisms (GMO) in the food supply. While the debate
around GM foods tends to be conducted in an all-are-
good or all-are-bad format, some distinctions are notable
in the literature. Potential benefits are highlighted by
GM rice strains modified to produce high levels of beta-
carotene. Vitamin A deficiency severely impairs immune
function and thus any alleviation could produce dra-
matic benefit in parts of the world with both low nutri-
ent supply and high exposure to pathogens [200]. While
not without vocal detractors [201], use of GM rice is
equivalent to supplement pills at providing adequate
intake of vitamin A in children and thus offers a poten-
tially life-saving benefit, as delivering beta-carotene
through rice would be easier and more economically
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sustainable than through medication [202]. Whether sour-
cing vitamin A from GM crops suffers from the same
shortcoming that pill-based supplementation have in
regards to improving clinical outcomes [182] remains to be
seen. Another potential benefit of GM technology, en-
hancement of crop yields, appears highly dependent on the
specific modification in question and the area into which it
is being deployed. Modifications that protect plants against
select caterpillars or beetles greatly improve yield in places
stricken with these pests, such as in parts of India [203],
but make no measurable impact in places without infesta-
tions, such as the United States or Europe [204]. However,
modification that impart drought-resistance to crops may
hold promise for improving crop yields in parts of the
United States, although their effects on human health are
as yet untested [205]. Thus, modifications may protect
against the harmful impacts of malnutrition, but only if
they are correctly targeted [206].

The possibility of inducing allergic reactions through
genetic modification was outlined when genetic ele-
ments from Brazil nuts were grafted into soy with dele-
terious consequences [207]. However, today GM food
products must be screened for homology against all
known allergens and future genetic modifications may
even remove allergenic proteins from the common aller-
genic foods [208]. Yet, concerning evidence does exist
against certain GM food practices. While many genetic
modifications represent the grafting of one naturally occur-
ring and routinely encountered gene into a commonly
eaten food, others signify what can be thought of as “self-
spraying” elements; some GM plants internally produce
pesticides or pesticide inhibitors in a manner that holds
little functional difference from externally spraying the
compound — examples include Bacillus thuringiensis
(Bt) producing and glyphosate-resistance plants. Since
pesticide-resistance genes tend to encourage increased
use of pesticides [204], it is a concerning finding that
pesticides like glyphosate induces cellular death in
human umbilical, placental, embryonic, and peripheral
blood mononuclear cells at physiologic levels [209-211];
further studies will be needed to either confirm or alleviate
these concerns. In animal models, the combination of
pesticide-producing GM maize and pesticide-resistant GM
soy led to increased rates of severe stomach inflammation
[212], although GM maize alone did not have significant ef-
fects on either inflammation or the make up of the gut
microbiome of pigs [213] and direct consumption of high
doses of Bt insecticide did not induce acute toxicity in
humans or toxicity in mice [214].

However, an additional concern was raised when stud-
ies revealed that functional genes, from both industrial
and natural sources, ingested by animals could be inter-
nalized by gut bacteria, these bacteria transcribe the
engrafted genes into functional proteins, and the genetic
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changes could be inherited by offspring via microbiome
transfer [215-218]. Human corollary was uncovered
when researchers showed that an intact and functional
industrial gene could be found in bacteria from the small
bowel of patients with ileostomies [219]. Research sub-
jects with intact gastrointestinal tracts did not show evi-
dence of the gene surviving the large bowel. While the
authors concluded that such modifications were safe
because only a small number of small-bowel bacteria
expressed the functional pesticide-resistance gene, the
hypothetical potential for transferring the production of
harmful compounds to the microbiome in a manner that
would circumvent gastric-acid inactivation was shown.
In theory, the ability to transfer genetics to the gut
microbiome could be utilized for therapeutic purposes,
but would be limited by the need to assure consistent
and non-toxic levels. Yet while the lack of direct investi-
gation into the human health impacts of GM foods pre-
clude definitive comment to either confirm or alleviate
the concern for harm, research on industrial GM crops
are subject to patent-law limitations, meaning that any
report of findings must have the manufacturer’s approval
prior to publication [220]. Thus the potential for conflict
of interest and suppression of evidence exists and para-
doxically may fuel some of the scientific ignorance and
mistrust driving the all-or-none debate.

Immunity driving nutrition

The original name for TNF-alpha was cachectin, derived
from its observed ability to induce profound weight loss
(cachexia) and appetite suppression [221]. Although the
exact pathology is complex, patients with chronic infec-
tions could find their appetite chemically blocked, open-
ing the possibility for further worsening of immune
function and infection from poor nutrient intake. Loss
of appetite and depression from some pro-inflammatory
cytokines [2] may limit palatable food options in ways that
increase the risk for nutrient deficiencies. Pro-inflammatory
cytokines also affect the glucocorticoid pathway, with impli-
cations on cortisol physiology and thus on stress, metabol-
ism, and development [221].

Beyond the well-known common antigens, coloring
and flavoring additives such as annatto and carmine may
cause anaphylaxis in sensitized patients and drive labeling
laws that influence dietary choices [222]. Unfortunately,
earlier recommendations for allergen avoidance during
pregnancy, breast feeding, and the child’s early years may
have done little to decrease allergic disease burden; while
definitive conclusions cannot yet be drawn, current evi-
dence does not support allergen avoidance during gestation
or nursing, and preliminary results from ongoing studies
have suggested early introduction of foods may prove to be
protective [223,224]. Allergic disease may subsequently
drive limitation in nutritional choices such as in children
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with atopic dermatitis whom tend to avoid nuts, dairy, egg,
fish, wheat, and/or artificial colorings [225]. While every
child should be evaluated for nutritional deficiencies on an
individual basis, children on allergy-driven elimination diets
have an increased risk for calcium and omega-3 deficiency
[225,226]. Therefore, clinicians should be attuned to both
the emotional and immunologic impacts of chronic inflam-
mation and immune dysfunction in their patients.

Economic considerations

Financial limitations are often cited as a primary factor
behind the higher consumption of unhealthy food prod-
ucts in a nation’s poor [227,228]. Yet, rising medical
costs stemming from diet-related illness have extended
these economic limitations into middle-income families
[229] and are thus capable of generating a downward
spiral of poor diet begetting medical illness, illness in-
creasing poverty, and poverty further entrenching a poor
diet. However, burdensome out-of-pocket medical costs
[230] may be forcing our society to realize that no mat-
ter how much cheaper a pro-inflammatory meal may be
at the register, the cost savings will be quickly erased by
any resultant medical illness. Costs of obesity not shoul-
dered by the patient are also mounting, one 2010 study
asserts that obese Americans will average additional an-
nual medical cost on the order of $1,152 for men and
$3,613 for women when you factor in loss of productiv-
ity; subjects that were significantly underweight also saw
increased medial bills [231]. Irrespective of whether such
expenses are carried by a system that is fully socialized,
privatized, employer-based, or any combination therein,
dietary choices will have large-scale impacts on the
economy. While poverty will continue to limit dietary
options, some fast food chains are improving the health
of their menus [232], for example where there was once
only soda and fries as fast food side items, many chains
now offer options for apples and milk. This trend will
hopefully continue and perhaps even spread to the sadly
lagging convenience stores and, in particular, the proc-
essed food manufacturers [232,233] if the public furthers
the realization that cheap food is not inexpensive if it is
also unhealthy.

Caveats

While the plentiful bounty of the Western world may
protect us from the harmful immune effects of micro-
and macronutrient deficiencies, the over abundance of
many substances simultaneously enhance inflammation
while muting our immune system’s ability to respond to
and ultimately control infections. The nutritional ele-
ments discussed herein are certainly not the entire ex-
planation for the disease patterns seen in industrialized
societies, and additional immune harms stemming from
our increasingly sedentary lifestyles, altered infectious
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Table 1 Summary of the immune impacts of dietary components and the nutritional impacts of various disease states

Macronutrient Immunologic impact In vitro Animal Human evidence Reviews
evidence models
Simple sugars - Reduced phagocytosis 24 — 25, 94-95, 100, 101, 102 92,103,
) ) ) 104
- Increased inflammatory cytokines production
- Dysbiosis
Complex - Reduced inflammatory cytokine production 27 33 27, 28, 29-30, 31 26,32
sugars - As part of intact food substance, may reduce risk
of certain diseases
- Reduced dysbiosis
Artificial - Mostly unknown or unproven 36-37, 104-107 35, 40 34 —
sweeteners . ) )
- Potential contributor to inflammatory bowel
disease
- Stevioside may enhance phagocytosis and T/B-cell
mitogen responses
Salt - May increase IL-17 and worsen autoimmune — 41-42 — —
disorders
Saturated fat - Alterations in prostaglandin pathway and 45, 47-49, 59, 50-52, 55,60 54,56, 5/-58, 164 43-44,
antioxidant mechanisms 61-62, 161-163 53, 63
- TLR2, and TLR4 activation; CD14 alterations
- Increase gut inflammation and reduce gut barrier
function
- Worse outcomes in sepsis; Increased risk of
autoimmunity, allergy, certain neoplasms
- Dysbiosis
Trans fat - Mostly unknown — — — 64
- Increased IL-6 and CRP levels
Omega-6 fatty - Increased inflammation via TLR4 activation 67 52, 66 65, 68 53, 64
acids .
- Dysbiosis
Omega-3 fatty - Reduced inflammatory cytokines and transcription 48, 74 80-82, 136 75-77 63,
acids factors 72-73,
) ) ) 79
- Increased resolvin and protecin production
- Increased IL.-10
Gluten - Possible TLR4 activation; studies limited to animal 83 83 84-87 88-89
models
- Induction of Celiac symptoms in patients with
HLA-DQ2 or HLA-DQ8
Red meat - Mostly unproven; studies limited to animal models — 145 142, 147 64, 149
- Increased endothelial inflammatory, activation of
foam-cell macrophages
Genetic - Mostly unknown 209-211 212-218 202, 207, 219 —
modification

- Reduction vitamin A or calorie deficiency
depending on modification/location of
deployment

- No apparent impact on allergic disease
- Increased exposure to pesticides

- Potential for transmission of functional genes into
small bowel bacteria
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Table 1 Summary of the immune impacts of dietary components and the nutritional impacts of various disease states

(Continued)

Pathologic
disorder

Effect on nutrition and/or immunity

In vitro
evidence

Animal Human evidence Reviews

models

Obesity
tolerance to inflammatory cytokines

- Reduced leukocyte numbers and function

- Reduced control of infection, heightened rates of
certain neoplasms

- Overproduction and eventual tolerance of leptin
- Dysbiosis

Anorexia and

bulimia numbers and function

- Reduced complement function
- Any disorders related to micronutrient disorders

Dysbiosis - Maternal transmission leading to immune

alterations in the offspring

- Increased inflammatory cytokines, immunologic 12

- Reduced monocyte, neutrophil, and T-cell —

47, 96-98,
104-107,

19 11, 13-15,16-18, 21, 169-171 7,20,

149

52,93, 111,
139, 144, 196

94-95, 100, 101, 102, 109, 110, 116,
131-135, 138, 141-143, 197

91-92,
99, 103

198-199

- Epigenetic changes altering offspring immunity
via paternal inheritance

- Reduced regulatory T cell numbers

- Worse outcomes in sepsis; Increased risk of
autoimmunity and allergy

- May increase likelihood of obesity

- May increase risk of certain neoplasms
Chronic
inflammation ) . )

- May increase risk of certain neoplasms

Food allergy
calcium and omega-3

- Reduced appetite and weight loss —

- Avoidance diets predisposing to deficiency in —

— 155 2

— 222,223, 224, 226 —

Citations are organized by the primary models used in the research, cell culture (In vitro), animal, or direct human effects. For studies involving human data:
further notation indicates cross-sectional studies (standard font); longitudinal study designs both prospective or retrospective or reviews discussing longitudinal
evidence (italic font); or interventional trials or reviews discussing intervention studies (bold font). The citations provided are not meant to be all-inclusive and thus
additional cited reviews of note are also provided; no additional annotation is provided in the review article column.

exposures, as well as increased exposure to pollutants
warrant their own reviews [2,234,235]. We should note
that the Western diet’s additional, more established, pro-
pensity for damaging metabolic homeostasis also causes
secondary immune dysfunction through resultant dis-
eases such as diabetes, adding greater emphasis on eat-
ing a healthy diet; the impacts of diet on the risk of
metabolic disorders and the immune defects in diabetes
have also been well reviewed [236-240]. Additionally, al-
though less established, the impacts of exercise on im-
munity and overall health are worthy of separate
examination [241,242]. One final caveat of note is that
many of the studies cited employ isolated nutrients for
testing, and thus an interesting area for further research
will be the difference between consumption of these
items in their naturally diverse combinations as com-
pared to the homogenized forms found in processed
foods or supplements; peanuts, for example, may contain
over eight different fatty acids [243], fruits have varying
ratios of simple and complex carbohydrates, whereas
many convenience foods contain a predominance of

oleic and palmitic saturated fatty acid, omega-6 fats, and
fructose syrups [1,244-246]. In effect, we must investi-
gate the difference between teaching the body to harvest
fat, carbohydrates, and protein from a proverbial fish ra-
ther than giving the body these pre-extracted nutrients.

Conclusions

Table 1 serves as a summary outline of the data on
immuno-nutrition focused upon in this review. In sum-
mary, there is enough quality, direct human evidence to
conclude that many of the dietary choices in today’s
modern society appear to have harmful impacts on our
immune system and likely on the immune system of our
offspring; while many of the remaining conclusions re-
lated to the modern diet’s deleterious influence can only
be extrapolated from in vitro and/or animal models,
given the sheer volume of evidence, predictions of simi-
lar human harm seem far from unreasonable (Table 1).
Although promise remains, it also appears unlikely that
synthetic supplements or probiotics will be able to fully
counterbalance the damage of our dietary choices, let
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alone undo them, if they are not accompanied by life-
style modifications. Of potentially greatest concern, our
poor dietary behaviors are encoded into both our DNA
scaffolding and gut microbiome, and thus these harmful
immune modifications are passed to our offspring dur-
ing their most critical developmental window. Therefore,
given the scope of influence, the vast economic impacts,
and the potential for trans-generational inheritance, the
dietary impacts on immune health should thus, at mini-
mum, be afforded a level of attention equal to that given
to the dietary impacts on cardiovascular health.
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