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The mechanism by which moderate alcohol
consumption influences coronary heart disease
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Abstract

Background: Moderate alcohol consumption is associated with a lower risk for coronary heart disease (CHD).
A suitably integrated view of the CHD pathogenesis pathway will help to elucidate how moderate alcohol
consumption could reduce CHD risk.

Methods: A comprehensive literature review was conducted focusing on the pathogenesis of CHD. Biomarker data
were further systematically analysed from 294 cohort studies, comprising 1 161 560 subjects. From the above a
suitably integrated CHD pathogenetic system for the purpose of this study was developed.

Results: The resulting integrated system now provides insight into the integrated higher-order interactions underlying
CHD and moderate alcohol consumption. A novel ‘connection graph’ further simplifies these interactions by illustrating
the relationship between moderate alcohol consumption and the relative risks (RR) attributed to various measureable
CHD serological biomarkers. Thus, the possible reasons for the reduced RR for CHD with moderate alcohol consumption
become clear at a glance.

Conclusions: An integrated high-level model of CHD, its pathogenesis, biomarkers, and moderate alcohol consumption
provides a summary of the evidence that a causal relationship between CHD risk and moderate alcohol consumption
may exist. It also shows the importance of each CHD pathway that moderate alcohol consumption influences.
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Background
The World Health Organisation indicates coronary heart
disease (CHD) as the leading cause of death globally [1].
It is also well documented that moderate alcohol (etha-
nol) consumption is associated with a lower relative risk
of CHD events [2-9]. However, the precise integrated
mechanisms of this lower risk are not always clear at a
glance.
Possible mechanisms may be due to the direct actions of

alcohol on specific pathogenetic pathways of CHD which
can be measured via serological biomarkers of CHD. Typ-
ically elevations of high density lipoprotein (HDL) cho-
lesterol levels, increases in serum adiponectin levels [10],
reduction in C-reactive protein (CRP) serum levels [11],
reduced serum fibrinogen levels [12], and increased insulin
sensitivity [13] have all been suggested as possible positive
influences of moderate alcohol consumption. However, we
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are not sure of the relative importance of each suggestion
and if these are the only influences.
Therefore, the purpose of this study is to visually inte-

grate information on how moderate consumption of alco-
hol influences the pathogenesis of CHD. These influences
may then provide a useful integrated summary for the
plausibility of a causal relationship between moderate
alcohol consumption and a reduction in CHD risk.
Methods
The integrative view of CHD is relevant to many other
health issues such as diet, depression, stress, insomnia,
sleep apnoea, exercise, smoking and oral health. For full
comprehension of the effect of alcohol it is replicated
here from [14].
Search criteria
We searched PubMed, Science Direct, Ebsco Host, and
Google Scholar for publications with “coronary heart
disease“or “coronary artery disease” or “cardiovascular
al. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:mjmathews@rems2.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Mathews et al. Nutrition Journal  (2015) 14:33 Page 2 of 12
disease” or “CHD” as a keyword and combinations with
“lifestyle effects”, “relative risk prediction”, “network ana-
lysis”, “pathway analysis”, “interconnections”, “systems
biology”, “pathogenesis”, “biomarkers”, “conventional bio-
markers”, “hypercoagulability”, “hypercholesterolaemia”,
“hyperglycaemia”, “hyperinsulinaemia”, “inflammation”,
and “hypertension” in the title of the study.
We also searched all major relevant specialty journals

in the areas of cardiology, nutrition, alcohol consump-
tion, endocrinology, psychoneuroendocrinology, systems
biology, physiology, CHD, the metabolic syndrome and
diabetes, such as Circulation; Journal of the American
College of Cardiology; Arteriosclerosis, Thrombosis and
Vascular Biology; The Lancet; New England Journal of
Medicine; American Journal of Medicine; Nature Medicine;
Diabetes Care; Journal of Clinical Endocrinology and
Metabolism; American Journal of Clinical Nutrition;
and Journal of Physiology for similar or related articles.
Furthermore, we selected PubMed and Google Scholar

for meta-analyses with keywords “coronary heart dis-
ease” or “coronary artery disease” or “cardiovascular dis-
ease” or “CHD”. We also reviewed articles referenced in
primary sources and their relevant citations. However,
unless cited more than 50 times, we included only arti-
cles published after 1998 as these contained the most
significant data.

Study selection
Only the trends from each meta-analysis that was ad-
justed for the most confounding variables was used and
only where sufficient information was available on that
trend. This was done so that the effects of most of the
potential confounders could be adjusted for. This may,
however, have increased the heterogeneity between stud-
ies, as not all studies adjusted for the same confounders.
CHD was classified as the incidence of atherosclerosis,

coronary artery disease, or myocardial infarction. Where
results were given for cardiovascular disease these were
interpreted as CHD only in scenarios where the effect of
stroke could be accounted for or results were presented
separately. Biomarkers were only considered if they were
associated with an increased or decreased risk of CHD.
The RR data for changes in biomarker levels were ex-

tracted from the relevant publications. However, it was
not the intention of this study to conduct individual
meta-analyses of the individual biomarkers. Thus the RR
for changes in biomarkers were, where possible, ex-
tracted from the most recent meta-analysis conducted
on the specific biomarker. If no meta-analysis was avail-
able, a suitable high quality study was included. In order
to limit errors in comparisons between separate bio-
markers only RR values given per increase of 1-standard
deviation (SD) in the biomarker level were included.
This standardisation of RR to RR per 1-SD prohibits the
misrepresentation of risk due to the selection of extreme
exposure contrasts [15].

Data analysis
Heterogeneity between studies was inevitable due to the
large quantity of meta-analyses considered. Each under-
lying meta-analysis reported individually on the hetero-
geneity in their analysis. However, these effects were not
so large as to discount the effects observed.
The individual meta-analyses also had detailed ac-

counts of differences between studies and subgroup ana-
lyses. These aspects are not further elaborated on in this
study as they were used as a measure of validity in the
study inclusion process. The individual studies selected
unfortunately represent only the risk associated with the
cohort studied and cannot be accurately extrapolated to
other populations without further research.
OR and HR were converted to RR using the approach

outlined by Zou [16]. It must however be noted that
some of the RR values in this article differ from conven-
tion. The need for this comes as a result of the visual
scaling of the traditional RR. Traditionally, if one plots
an RR = 3 and RR = 0.33, respectively, the one does not
‘look’ three times worse and the other three times better
than the normal RR = 1. The reason is that the scales for
the positive and negative effects are not numerically
similar. A graph of ‘good’ and ‘bad’ RR can therefore be
deceptive for the untrained person, e.g., a patient.
This article rather uses the method that the conven-

tional RR = 3 is three times worse than the normal RR =
1. While the conventional RR = 0.33 means that the
patient’s position is three times better than the normal
RR = 1. Thus, in summary: a conventional RR = 3 is pre-
sented as per normal, as a 3-fold increase in risk and a
conventional RR = 0.33 is presented as a 3-fold decrease
in risk (1/0.33 = 3).

Results and discussion
Integrated view of coronary heart disease
An investigation of the interconnectivity of lifestyle fac-
tors (and specifically of moderate alcohol consumption),
CHD pathogenesis, and pathophysiological traits attrib-
uted with the disorder was conducted. This study was
based on data extracted from published metastudies,
where genetic risk factors for CHD were not considered.
A suitably integrated CHD model of the pathogenesis

and serological biomarkers of moderate alcohol con-
sumption was not found in the literature. Such a model
was thus developed and is presented in Figure 1, which
schematically illustrates the complexity of CHD [14].
It is however important to realize that CHD involves

inputs from hundreds of gene expressions and a number
of tissues. Thus, when investigating CHD, analysing the
individual components of the system would not be



Figure 1 Conceptual model of general lifestyle factors, salient CHD pathogenetic pathways and CHD hallmarks. From “How do high
glycemic load diets influence coronary heart disease?” by Mathews MJ, Liebenberg L, Mathews EH. Nutr Metab. 2015:12:6 [14]. The affective
pathway of pharmacotherapeutics, blue boxes, is shown in Figure 1, and salient serological biomarkers are indicated by the icon. The blunted
blue arrows denote antagonise or inhibit and pointed blue arrows denote up-regulate or facilitate. HDL denotes high-density lipoprotein; LDL,
low-density lipoprotein; oxLDL, oxidised LDL; FFA, free fatty acids; TMAO, an oxidation product of trimethylamine (TMA); NLRP3, Inflammasome
responsible for activation of inflammatory processes as well as epithelial cell regeneration and microflora; Hs, homocysteine; IGF-1, insulin-like
growth factor-1; TNF-α, tumour necrosis factor-α; IL, interleukin; NO, nitric oxide; NO-NSAIDs, combinational NO-non-steroidal anti-inflammatory
drug; SSRI, serotonin reuptake inhibitors; ROS, reactive oxygen species; NFκβ, nuclear factor-κβ; SMC, smooth muscle cell; HbA1c, glycated haemoglobin
A1c; P. gingivalis, Porphyromonas gingivalis; vWF, von Willebrand factor; PDGF, platelet-derived growth factor; MIF, macrophage migration inhibitory
factor; SCD-40, recombinant human sCD40 ligand; MPO, myeloperoxidase; MMP, matrix metalloproteinase; VCAM, vascular cell adhesion molecule;
ICAM, intracellular adhesion molecule; CRP, C-reactive protein; PAI, plasminogen activator inhibitor; TF, tissue factor, MCP, monocyte chemoattractant
protein; BDNF, brain-derived neurotrophic factor; PI3K, phosphatidylinositol 3-kinase; MAPK, mitogen-activated protein (MAP) kinase; RANKL, receptor
activator of nuclear factor kappa-beta ligand; OPG, osteoprotegerin; GCF, gingival crevicular fluid; D-dimer, fibrin degradation product D; BNP, B-type
natriuretic peptide; ACE, angiotensin-converting-enzyme; COX, cyclooxygenase; β-blocker, beta-adrenergic antagonists.
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sufficient, as it is also important to know how these com-
ponents interact with each other [17]. For instance, gen-
etic and lifestyle factors influence clinical traits by
perturbing molecular networks [18]. A high-level systems-
based view of CHD therefore has the potential to interro-
gate these molecular phenotypes and identify the patterns
associated with the disease.
Pathways can be tracked from a chosen lifestyle factor
to a hallmark of CHD if the two states are connected by
the pathogenesis of the disorder. The pathways are
therefore a visual representation of previously published
knowledge merely integrated here. The pathogenetic
pathways of interest for this review were only those
between moderate alcohol consumption and CHD.
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The lifestyle factor of “Alcohol” (Figure 1) was regarded
as comprising of a moderate intake of 20–30 g of alcohol
(ethanol) per day for men and half that for women [9].
“Tissue” in Figure 1 indicates the organ or type of tissue
which is affected by a pathogenetic pathway or trait.
“Pathogenesis” in Figure 1 indicates the pathogenetic path-
ways of the disorder.
Salient serological biomarkers (shown in Figure 1 as )

and pharmacotherapeutics (shown in Figure 1 as ) that
act on the pathways are also indicated in Figure 1. These
pathogenetic pathways also lead to certain traits (e.g. insulin
resistance) that lead to five pathophysiological end-states,
which we designate as “hallmarks of CHD”, namely hyper-
coagulability, hypercholesterolaemia, hyperglycaemia/
hyperinsulinaemia, an inflammatory state, and hypertension.
The formulation of this conceptual model required the

consultation of numerous publications. The journal ref-
erences which were used to describe the main pathogen-
etic pathways in the model are given in Table 1 [14]. It is
however not the purpose of this review to describe in
detail all these pathways. The aim is merely to simplify
Figure 1 to elucidate only the pathways relevant to mod-
erate alcohol consumption.
Despite the rich body of existing knowledge pertaining

to CHD pathogenesis, lifestyle factors, and pharma-
cotherapeutics [17-21], a suitable integrated high-level
conceptual model of CHD could not be found for the
purpose of this study. A high-level model that consoli-
dates the effects of moderate alcohol consumption on
the RR of CHD and CHD biomarkers was thus devel-
oped. This model could thus help elucidate the higher-
order interactions underlying CHD [17] and provide
new insights into the relationship between CHD inci-
dence and moderate alcohol consumption.

Pathogenetic effects of moderate alcohol consumption
Figure 1 indicates all possible pathogenetic pathways
between the considered lifestyle factors and CHD. In the
current review only the CHD effects of moderate alcohol
consumption, detailed in Table 2, are appraised. The
pathogenetic pathways which are activated by moderate
alcohol consumption are elucidated therein. It is import-
ant to note that not all the pathogenetic pathways indi-
cated in Figure 1 will be relevant in all patients, and all
the pathways may not be active simultaneously.
Alcohol can serve to both reduce chronic inflammation

and increase vasodilation through the regulation of insulin
resistance (Figure 1, Pathways: 1-14-54-69-70-89-100-85
and 1-14-54-69-72). This is beneficial to the RR for CHD
through the regulation of these hallmarks. The effect of
alcohol on acute insulin sensitivity is via a direct effect on
fatty acid uptake in muscle tissue [22]. Therefore, a
chronic increase in insulin sensitivity is due to reductions
in adipose tissue and free fatty acid availability [22].
Moderate alcohol consumption has also been found to
increase serum adiponectin levels [10,23]. Increases in
plasma adiponectin concentrations can further increase
insulin sensitivity by increasing muscle fat oxidation
[24]. (Figure 1, Pathway: 1-49-19.)
Moderate alcohol consumption acts upon the liver and

can therefore serve to directly increase the hepatic pro-
duction and secretion of apolipoproteins and lipoprotein
particles, increase triglyceride lipase concentrations, and
decrease removal of circulating high density lipoprotein
cholesterol [4]. Up-regulation of HDL or inhibition of
LDL results in a reduction in the incidence of hyper-
cholesterolaemia, which is a CHD hallmark. (Figure 1,
Pathways: 1-12-33-51 and 1-10-31.)
Alcohol also reduces hyperglycaemia through the

inhibition of hepatic gluconeogenesis, with a resulting
reduction in plasma glucose levels. Reduced plasma glu-
cose levels serve to decrease the incidence of hypergly-
caemia and hyperinsulinaemia [25], which are both CHD
hallmarks. (Figure 1, Pathway: 1-14-55.) However, it is
acknowledged that the over-regulation of this specific
pathway could also lead to hypoglycaemia in patients
with heavy alcohol use [26].
It has also been noted that moderate alcohol use reduces

fibrinogen levels, clotting factors, and platelet aggregation,
which affects the CHD hallmark hypercoagulability. How-
ever, the precise mechanisms governing these reductions
are not known [4]. (Figure 1, Pathway 1–49 and 1-49-75.)
From the above data it may be seen that the impact of

ethanol consumption on the pathogenesis of CHD may
highlight the potential methods of action in the lower
relative risk of CHD associated with moderate alcohol
consumption. Therefore, in order to further elucidate
these effects we consider the impact of alcohol con-
sumption on the biomarkers of CHD.

Coronary heart disease biomarkers
The integrated model that was developed is a high-
level conceptual model, from which the interconnect-
edness of CHD is immediately apparent (Figure 1).
Therefore, in order to simplify the model, serological
biomarkers (which quantifies the CHD pathways and
which can be easily measured) were used to link the
effect of moderate alcohol consumption to the corre-
sponding risk of CHD [14].
Biomarkers can be used as indicators of an underlying

disorder, such as systemic inflammation which is a
known aggravating factor in the pathogenesis of CHD
[27-29]. The measurement of specific biomarkers en-
ables the prediction of the risk for CHD associated with
said biomarker [30]. As it is also possible to accurately
measure certain serum biomarker levels, they can be
used as patient-specific links to pathogenetic or lifestyle
factors (i.e. moderate alcohol consumption).



Table 1 Pathogenetic pathways (in Figure 1) and cited works

Pathway Refs. Pathway Refs. Pathway Refs. Pathway Refs. Pathway Refs. Pathway Refs.

1 [4,44] 2 [45-49] 3 a,b,c [50-52] 4 a,b [53-55] 5 [56-58] 6 [59-61]

7 a,b [62-67] 8 a,b [68-70] 9 [71] 10 [30,72-75] 11 [19,30] 12 [30]

13 [47-49] 14 [19,76-83] 15 [82-84] 16 [68-70] 17 [76-83] 18 [55,85-87]

19 [84,85] 20 [68-70] 21 [19,27,28,87-91] 22 [87] 23 [92-96] 24 [97-99]

25 [68-70] 26 [97-102] 27 [34,60,61,103-114] 28 [115-119] 29 [30,120] 30 [19,30,72-75]

31 [19,30,72-75] 32 [30] 33 [30] 34 [19,84-87] 35 [68-70] 36 [19,84-87]

37 [19,84-87] 38 [28,34,121-125] 39 [84,85] 40 [68-70] 41 [27,28,125] 42 [27,119]

43 [27,28,56,92-96] 44 [97-99] 45 [59,107,109] 46 [59,107,109] 47 [59,107,109] 48 [59,107,109]

49 [115-117,126] 50 [30,122,127] 51 [17-19,21,30,120,121,127-130] 52 [47,48] 53 [19,76-83] 54 [19,76-83]

55 [19,76-83,131-136] 56 [19,84-87] 57 [19,84-87,120,137-140] 58 [19,84-87,120] 59 [110-113] 60 [110-113]

61 [110-113] 62 [56,93] 63 [92-95] 64 [56,57] 65 [56,57,94] 66 [68-70]

67 [68-70] 68 [84-87] 69 [115] 70 [115-117] 71 [30,115-117,120,141,142] 72 [30,115-117,120,141,142]

73 [19,72,119] 74 [19,72,119] 75 [72,91,119,131,138] 76 [19,27,28] 77 [27,131] 78 [27,131]

79 [19,27,72,131] 80 [19,27,72,131] 81 [27,72,131] 82 [72,115,121] 83 [133-136] 84 [27]

85 [19,121,128,139,140] 86 [19,121] 87 [121] 88 [30,121,138,141,142] 89 [30,121,138,141,142] 90 [72,131,138]

91 [97-99] 92 [30,72,129] 93 [97,98] 94 [143-146] 95 [147-150] 96 [147-150]

97 [30] 98 [27,72,121,131] 99 [30] 100 [121] 101 [115-117] 102 [30,76,79,115,121,129]

103 [19,27,30,90] 104 [19,30,121,129,138] 105 [19,27,30,90,151,152] 106 [19,30,121,129,138]

From “How do high glycemic load diets influence coronary heart disease?” by Mathews MJ, Liebenberg L, Mathews EH. Nutr Metab. 2015:12:6 [14]. a, b, c denote the multiple pathways between lifestyle effects and
CHD pathogenesis.
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Table 2 Putative effects of high-glycemic load diets and salient CHD pathogenetic pathways

Lifestyle Pathways, and pathway numbers corresponding to those in Figure 1 Refs.

Moderate alcohol
consumption

a. 1-12-↓ LDL-33-51-↓ hypercholesterolaemia a. [3,7,8,25,26,153]

b. 1-10-↑ HDL-31-↓ hypercholesterolaemia b. [3,7,8,25,26,153]

c. 1-14-↓ blood glucose-55-↓ hyperglycaemia c. [3,7,8,25,26,153]

d. 1-14-↓ blood glucose-54-69-↓ insulin resistance-70-89-↓ hypertension-100-↓ ROS-85-↓ inflammatory state d. [28,153]

e. 1-14-↓ blood glucose-54-69-↓ insulin resistance-72-↑ vasodilation e. [128]

↑ denotes up regulation/increase, ↓ denotes down regulation/decrease, x-y-z indicates pathway connecting x to y to z. HDL, high-density lipoprotein; LDL,
low-density lipoprotein; ROS, reactive oxygen species.

Table 3 Salient serological and functional biomarkers of CHD, and prospective ones

Biomarker (class and
salient examples)

Prediction of CHD Size of studies Ref.

Relative risk (95% CI) (N = number of trials, n = number of patients)

Lipid-related markers:

HDL 0.78 (0.74-0.82) (N = 68, n = 302 430) [154]

Triglycerides 0.99 (0.94-1.05) (N = 68, n = 302 430) [154]

Leptin 1.04 (0.92-1.17) (n = 1 832) [155]

LDL 1.25 (1.18-1.33) (N = 15, n = 233 455) [156]

Non-HDL 1.34 (1.24-1.44) (N = 15, n = 233 455) [156]

ApoB 1.43 (1.35-1.51) (N = 15, n = 233 455) [156]

Inflammation markers:

TNF-α 1.17 (1.09-1.25) (N = 7, n = 6 107) [157]

hsCRP 1.20 (1.18-1.22) (N = 38, n = 166 596) [158]

IL-6 1.25 (1.19-1.32) (N = 25, n = 42 123) [157]

GDF-15 1.40 (1.10-1.80) (n = 1 740) [159]

OPG 1.41 (1.33-1.57) (n = 5 863) [160]

Marker of oxidative stress:

MPO 1.17 (1.06-1.30) (n = 2 861) [161]

Marker of vascular function and neurohormonal activity:

Homocysteine 1.15 (1.09-1.22) (N = 20, n = 22 652) [162,163]

BNP 1.42 (1.24-1.63) (N = 40, n = 87 474) [164]

Coagulation marker:

Fibrinogen 1.15 (1.13-1.17) (N = 40, n = 185 892) [158]

Necrosis marker:

Troponins 1.15 (1.04-1.27) (n = 3 265) [20]

Renal function marker:

Urinary ACR 1.57 (1.26-1.95) (n = 626) [165]

Metabolic markers:

IGF-1 0.76 (0.56-1.04) (n = 3 967) [166]

Adiponectin 0.97 (0.86-1.09) (N = 14, n =21 272) [167]

Cortisol 1.10 (0.97-1.25) (n = 2 512) [168,169]

BDNF ? N/A [99,101,102]

HbA1c 1.42 (1.16-1.74) (N = 2, n = 2 442) [170]

Insulin resistance (HOMA) 1.46 (1.26-1.69) (N = 17, n = 51 161) [171]

From “How do high glycemic load diets influence coronary heart disease?” by Mathews MJ, Liebenberg L, Mathews EH. Nutr Metab. 2015:12:6 [14]. n denotes number of
participants; N, number of trials; ?, currently unknown RR for CHD; HDL, high-density lipoprotein; BNP, B-type natriuretic peptide; ACR, albumin–to-creatinine ratio; GDF-15,
growth-differentiation factor-15; LDL, low-density lipoprotein; HbA1c, glycated haemoglobin A1c; hsCRP, high-sensitivity C-reactive protein; IL-6, interleukin-6; TNF-α, tumour
necrosis factor-α; ApoB, apolipoprotein-B; IGF-1, insulin-like growth factor-1; MPO, myeloperoxidase; RANKL or OPG, osteoprotegerin; BDNF, brain-derived neurotrophic factor;
HOMA, homeostatic model assessment.
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A published study where all the important serum bio-
markers were compared to show their relative import-
ance regarding CHD risk prediction could not be found.
This was therefore attempted in Table 3 with the corre-
sponding results in Figure 2.
Table 3 presents the RR data from 294 cohort studies

comprising 1 161 560 subjects. The results from these
studies were interpreted and the averaged RR (with
standard error (I) and study size (N)) was used to popu-
late Figure 2. Figure 2 visually compares the RR of CHD
associated with serological biomarkers per 1-standard
deviation increase in said biomarker.
The comparative view of biomarker associated risks

presented in Figure 2 elucidates the relative importance
of various biomarkers of CHD. Using the array of bio-
marker risks and the integrated model developed in
Figure 1 it is possible to display the interconnection of
the pathogenesis of CHD and moderate consumption of
alcohol. It may thus be possible to quantify the direct
pathogenetic effects of moderate alcohol consumption
on CHD through changes in biomarkers.

Effects of moderate alcohol consumption
By combining the array of biomarker risks and the patho-
genetic pathways elucidated from Figure 2 a connection
graph which displays the pathogenetic connections between
Figure 2 Normalised relative risks (fold-change) of salient current bio
“How do high glycemic load diets influence coronary heart disease?” by M
Increased IGF-1 and HDL levels are associated with a moderately decreased
relative risk for CHD.) N indicates number of trials; I, standard error; Adipo, a
peptide; ACR, albumin-to-creatinine ratio; GDF-15, growth-differentiation fa
glycated haemoglobin A1c; Trop, troponins; Trigl, triglycerides; CRP, C-reacti
tumour necrosis factor-α; ApoB, apolipoprotein-B; IGF-1, insulin-like growth
BDNF, brain-derived neurotrophic factor; HOMA, homeostasis model assess
moderate alcohol consumption and CHD biomarker risk
was developed. The pathogenetic pathways (from Figure 1),
which are elucidated by the associated biomarker, are super-
imposed on the connecting lines in Figure 3. Increasing line
thickness indicates a connection with greater pathogenetic
effect (as quantified by biomarker risk prediction of CHD).
For example, the risk of CHD is relatively low when consid-
ering adiponectin, thus the connection line between moder-
ate alcohol consumption and adiponectin is thin.
From the connection graph in Figure 3 it is clear that

moderate alcohol consumption is widely connected to
the biomarkers associated with CHD risk. It is apparent
that there are multiple connections between moderate
alcohol consumption and the metabolic function bio-
markers, the inflammation biomarkers, as well as a con-
nection to the coagulation biomarker, fibrinogen.
The connections between alcohol consumption and

inflammation are evident from Figure 3. The anti-
inflammatory effect associated with moderate alcohol
consumption could explain some of the lower CHD
risk. Imhof and co-workers however found that exces-
sive and no consumption of alcohol, led to higher
serum levels of CRP compared to moderate alcohol
consumption [31,32]. This indicates that excessive
alcohol consumption can increase inflammation and a
patient’s risk for CHD, and therefore emphasises that care
markers or of potential serological biomarkers for CHD. From
athews MJ, Liebenberg L, Mathews EH. Nutr Metab.2015:12:6 [14]
CHD risk. (IGF-1and HDL levels are significantly inversely correlated to
diponectin; HDL, high-density lipoprotein; BNP, B-type natriuretic
ctor-15; Cysteine, Homocysteine; LDL, low-density lipoprotein; HbA1c,
ve protein; IL-6, interleukin-6; Fibrin, fibrinogen; Cort, cortisol; TNF-α,
factor-1; MPO, myeloperoxidase; RANKL or OPG, osteoprotegerin;
ment.



Figure 3 Interconnection of relative risk effects of moderate alcohol consumption and serological biomarkers for CHD. “ACR” denotes,
albumin-to-creatinine ratio; Trop, troponins; Fibrin, fibrinogen; MPO, myeloperoxidase; BNP, B-type natriuretic peptide; Cysteine, Homocysteine;
HDL, high-density lipoprotein; LDL, low-density lipoprotein; Trigl, triglycerides; ApoB, Apolipoprotein-B; Adipon, adiponectin; HbA1c, glycated
haemoglobin A1c; Cort, cortisol; IGF-1, insulin-like growth factor-1; BDNF, brain-derived neurotrophic factor; GDF-15, growth-differentiation factor-15;
CRP, C-reactive protein; IL-6, interleukin-6; TNF-α, tumour necrosis factor-α; RANKL or OPG, osteoprotegerin.
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needs to be taken when contemplating moderate alcohol
use as a lifestyle factor for CHD prevention [33].
Moderate alcohol intake has also been connected to

an increase in adiponectin levels [10,13,23], which can
lead to a reduction in adipose tissue; this in turn can in-
crease insulin sensitivity and decrease inflammation [34].
Thus, some of the reduction in inflammation, and the
concomitant decrease in CHD risk, may be accounted
for by increased serum levels of adiponectin.
Various cohort studies have also observed that fibrino-

gen serum reduce after moderate alcohol consumption in
[4,11,12,35]. This leads to a reduction in hypercoagulabil-
ity, which would reduce the risk for CHD events.
Overall, the increase in HDL is thought to account for

50% of the lower CHD risk observed in those consuming
alcohol in moderation [36]. The remaining lowered
CHD risk is thought to be due to the anti-thrombotic
effects of decreased fibrinogen serum levels [12] and
increased serum levels of adiponectin [10,23].
However, from the connection graph in Figure 3 it is

deemed plausible that a portion of the lower risk for
CHD associated with moderate alcohol consumption
may also be due to an anti-inflammatory effect, inde-
pendent of increased adiponectin levels [32].
Although the numerical values of RR presented here

are based on large, clustered clinical trials, and thus give
a good idea of average effects, it is acknowledged that
individual patients will have very specific CHD profiles.
However, Figure 1 is still relevant to everyone and
should thus provide general insight. Therefore, Figure 1
could inter alia reveal pathways still available for further
biomarker and drug discovery.

Discussion
It is well documented that the lowered CHD risk associated
with moderate alcohol consumption is independent of bev-
erage type [12,32,35]. This underscores the hypothesis that
the lower risk of CHD associated with consuming alcohol
in moderation is due to the ethanol content consumed and
not the non-alcoholic components of the beverages [35].
It has however been suggested in one study that the

lower risk for CHD associated with moderate alcohol con-
sumption may be entirely due to higher socioeconomic
status which is more prevalent with persons who consume
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moderate amounts of alcohol [37]. However, the results
with regards to changes in serological biomarkers, as
shown in Figure 3, would indicate that alcohol consump-
tion does attributes some positive action on the pathogen-
esis of CHD.
The majority of studies show that moderate alcohol

consumption conforms to a lower risk for CHD [4-8]. It
therefore appears to validate the observation that mod-
erate alcohol use could be a suitable lifestyle factor to
consider for the prevention of CHD. However, the use of
alcohol as a preventative treatment is complex due to
both the potential adverse effects associated with alco-
hol, and as alcohol abuse contributes greatly to prevent-
able deaths in the United States [33].
Additionally, it has been found that teetotallers and

drinkers of fewer than one drink a month have a greater
risk for fatal CHD than moderate and even heavy
drinkers [5]. However, heavy drinkers have an increased
risk of myocardial infarction [5].
Excessive alcohol consumption, more than 30 g per

day, has also been associated with hypertension [38], de-
clining ejection fraction [39], progressive left ventricular
hypertrophy [40], increased risk of stroke [41], dementia
[42] and overall mortality [43]. Thus, it is extremely
important that alcohol use be constrained to moderate
consumption levels, of 20–30 grams of ethanol per day
for men and 10–15 grams of ethanol per day for women,
in order to gain a potential benefit from its use.
It is further acknowledged that moderate alcohol con-

sumption may not be possible due to religious or personal
reasons. In addition, caution is advised in recommending
moderate alcohol use to patients who had not previously
consumed alcohol regularly, or at all [40]. Serious consid-
eration should also be taken with patients that have a fam-
ily history of alcohol abuse, addiction or depression.
Furthermore, the lower risk for CHD in moderate alcohol
consumers has been found to be more evident in middle-
aged (50–59 years) and older adults (≥60 years) compared
to younger adults (≤50 years) [3].
The current data regarding the consumption of al-

cohol in CHD risk reduction is based largely on obser-
vational studies [9]. However, based on the wide
connection and effect of alcohol on the biomarkers, as
shown in Figure 3, and pathogenetic pathways of CHD
(Figures 1 and 3) it seems plausible that moderate alco-
hol consumption may prove a causal factor in CHD risk
reduction. Thus it may be possible that the consump-
tion of alcohol in a moderate dosage of 20–30 grams
for men and 10–15 grams for women may prove bene-
ficial to overall CHD risk.

Conclusions
Moderate alcohol consumption is associated with a
lower risk of CHD. This lower risk has been observed
independent of the beverage type consumed. A high-
level conceptual model has been developed which links
moderate alcohol consumption, and the pathogenesis
and hallmarks of CHD.
This shows the positive effect of moderate alcohol

consumption on certain important aspects of the patho-
genesis of CHD and may explain why moderate alcohol
consumption is associated with lower CHD risk. It is
now clear at a glance that moderate alcohol consump-
tion increases HDL-cholesterol, insulin sensitivity and
adiponectin levels while decreasing inflammation, all of
which have positive effects on the risk for CHD.
The integrated high level CHD model provides a sum-

mary of evidence for a causal relationship between CHD
risk and moderate alcohol consumption.
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