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Abstract

Background: Obesity is a state of chronic low-grade inflammation. Chronic low-grade inflammation is associated
with the pathophysiology of both type-2 diabetes and atherosclerosis. Prevention or reduction of chronic low-
grade inflammation may be advantageous in relation to obesity related co-morbidity. In this study we investigated
the acute effect of dietary protein sources on postprandial low-grade inflammatory markers after a high-fat meal in
obese non-diabetic subjects.

Methods: We conducted a randomized, acute clinical intervention study in a crossover design. We supplemented
a fat rich mixed meal with one of four dietary proteins - cod protein, whey isolate, gluten or casein. 11 obese non-
diabetic subjects (age: 40-68, BMI: 30.3-42.0 kg/m2) participated and blood samples were drawn in the 4 h
postprandial period. Adiponectin was estimated by ELISA methods and cytokines were analyzed by multiplex assay.

Results: MCP-1 and CCL5/RANTES displayed significant postprandial dynamics. CCL5/RANTES initially increased
after all meals, but overall CCL5/RANTES incremental area under the curve (iAUC) was significantly lower after the
whey meal compared with the cod and casein meals (P = 0.0053). MCP-1 was initially suppressed after all protein
meals. However, the iAUC was significantly higher after whey meal compared to the cod and gluten meals (P =
0.04).

Conclusion: We have demonstrated acute differential effects on postprandial low grade inflammation of four
dietary proteins in obese non-diabetic subjects. CCL5/RANTES initially increased after all meals but the smallest
overall postprandial increase was observed after the whey meal. MCP-1 was initially suppressed after all 4 protein
meals and the whey meal caused the smallest overall postprandial suppression.

Trial Registration: ClinicalTrials.gov ID: NCT00863564
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Background
The global incidence of obesity is escalating at epidemic
proportions. The obesity related co-morbidities include
increased incidence of the metabolic syndrome, type-2
diabetes (T2DM), hypertension, dyslipidaemia and
chronic low-grade inflammation [1,2].
Interestingly, Hotamisligil et al [3] in 1993 suggested

that chronic low-grade inflammation plays a role in the

pathophysiology of obesity in general and of insulin
resistance in particular. This has subsequently been sup-
ported by the demonstration of a correlation between
circulating levels of inflammatory markers and both
T2DM [4] and atherosclerosis in humans [5-8].
White adipose tissue (WAT) is an important endocrine

organ that secretes molecules, referred to as adipokines
[9]. The chronic low-grade inflammation of obesity is
characterized by increased concentrations of circulating
inflammatory adipokines and cytokines [10-13]. Impor-
tantly, the inflammatory and metabolic pathways are
linked. WAT is infiltrated with macrophages in response
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to adipocyte hypertrophy and the associated increase in
monocyte chemotactic protein-1 (MCP-1) expression
[14,15]. Increased circulating concentrations of MCP-1
are in humans predictive of both diabetes risk indepen-
dently of other traditional risk factors [16] and athe-
rosclerosis [17,18]. Furthermore, differentiation of
monocytes into macrophages starts in plasma, when
monocytes are activated in response to postprandial tri-
glyceride rich lipoproteins [19,20] and free fatty acids
[21]. While MCP-1 is now regarded as a key inflamma-
tory marker, CC chemokine ligand-5 (CCL5/RANTES)
has in recent years emerged as a potentially therapeutic
target in the prevention of atherosclerosis [22,23]. The
interaction between CCL5/RANTES and monocytes
facilitates the adherence and transmigration of mono-
cytes through the arterial wall [22] initiating the athero-
sclerotic process. CCL5/RANTES antagonisms have been
demonstrated to reduce atherosclerotic lesions in mice
[24]. Furthermore, CCL5/RANTES is up-regulated in
WAT of obese compared to lean subjects [25] facilitating
macrophage infiltration of adipose tissue.
Though, the impact of dietary protein on postprandial

inflammation has not been thoroughly elucidated, the
impact of diet in general on low-grade inflammation has
been demonstrated (reviewed in [26]). Thus, a positive
correlation to postprandial inflammation has been
demonstrated for total energy intake in healthy men
[27,28] and a diet rich in saturated fat in overweight sub-
jects [29]. Moreover dyslipidaemia characteristically for
obesity, i.e. hypertriglyceridaemia, elevated apolipopro-
tein (Apo) B and small, dense low-density lipoproteins
(LDL) has been positively correlated to low-grade inflam-
mation in abdominally obese subjects with and without
the metabolic syndrome [30]. The composition of meal
fatty acids play an important role for low-grade inflam-
mation in humans i.e. n-3 polyunsaturated fatty acids
(PUFA) being anti-inflammatory while n-6 PUFA and
saturated fatty acids appear to be pro-inflammatory
[31-33]. The impact of dietary carbohydrate on postpran-
dial inflammation is controversial [26,34].
Less is known about the influence of dietary protein on

postprandial inflammation. Arya et al [35] demonstrated
that meat with high fat content is more pro-inflammatory
compared to lean meat in healthy subjects. Moreover, an
inverse relationship has been demonstrated between
dairy product consumption and low-grade inflammation
in healthy subjects [36] and obese subjects [37].
We hypothesize that dietary protein sources may exert a

differential impact on acute postprandial low-grade
inflammation. In the present study we focused on the two
inflammatory markers MCP-1 and CCL5/RANTES. As
cod protein, gluten, casein and whey protein have been
demonstrated to elicit differential postprandial lipid, glu-
cose and hormone responses in healthy [38], overweight

[39] and type-2 diabetic subjects [40] these four protein
sources originating from fish, crops and milk may be suita-
ble for assessing the impact of dietary protein on post-
prandial low-grade inflammation. The differential impact
of the four protein sources on postprandial triglycerides
and insulin may particularly reveal correlated differential
responses on postprandial low-grade inflammation.

Subjects and methods
11 obese Caucasian subjects (8 postmenopausal women
and 3 men) were recruited after advertising in local news-
papers. All subjects had a body mass index (BMI) above
30 and all subjects were non-diabetics according to fasting
plasma glucose < 7.0 mmol/l. Subjects with impaired fast-
ing glucose were subjected to an oral glucose tolerance
test and were excluded if the 2 h plasma glucose level was
≥ 11.1 mmol/l. No participant took medication with
impact on lipids, inflammation, immune system or insulin
sensitivity and all participants were non-smokers. No
change in concomitant medication was allowed during the
trial. Subject characteristics are shown in Table 1. All sub-
jects gave written informed consent and the study was
approved by The Committees on Biomedical Research
Ethics for the Central Region of Denmark. This study was
registered at clinicaltrials.gov (ID: NCT00863564).

Study design
We performed a nested randomized, acute clinical inter-
vention study. All subjects ingested four different meals on
four different days with a washout period of two weeks
between meals. Each subject was randomized to one of
four meal sequences based on a Latin square design.
Before each test day the subjects were given and con-
sumed a standard diet with the following energy distribu-
tion: 56% energy from carbohydrate, 24% energy from fat
and 20% energy from protein. The energy content was 7

Table 1 Clinical characteristics of the eleven (8 women
and 3 men) obese non-diabetic subjects1

Age (yr) 55.2 ± 9.4 (40-68)

Weight (kg) 100.9 ± 13.8 (79.0-120.9)

BMI (kg/m2) 33.9 ± 3.4 (30.3-42.0)

Waist (cm) 111.4 ± 6.8 (102-121)

♂ 118.7 ± 2.1 (117-121)

♀ 108.6 ± 5.7 (102-117)

Waist-to-hip ratio 0.92 ± 0.07 (0.83-1.08)

♂ 1.01 ± 0.06 (0.98-1.08)

♀ 0.89 ± 0.03 (0.83-0.92)

HbA1c (%) 5.8 ± 0.4 (5.3-6.5)

HOMA2 (IR) 1.3 ± 0.5 (0.3-2.0)

Fasting plasma glucose (mmol/l) 5.9 ± 0.4 (5.3-6.6)

Fasting plasma triglyceride (mmol/l) 2.0 ± 0.8 (0.7-3.1)
1 All values are means ± SD; range in parentheses.
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000 kJ for women and 9 000 kJ for men. All subjects were
asked to refrain from alcohol consumption and exercise in
the 24 h preceding the test day. In the morning after a
12 h fasting period a catheter was inserted into an antecu-
bital vein. After 15 min of rest baseline samples were
drawn. The test meal was served and ingested within
20 min and blood samples for inflammatory markers were
drawn in the 4 h postprandial period. The subjects were
allowed to drink tap water ad libitum. Plasma was sepa-
rated immediately by centrifugation at 2 000 × g for
20 min at 4°C. Plasma samples were stored at -80°C until
analyzed.

Test meals
All subjects consumed in random order four fat rich test
meals containing 4971 - 4986 KJ with 19 E% carbohydrate,
66 E% fat and 15 E% protein, respectively. All test meals
consisted of an energy free soup with an added 100 g of
butter (Lurpak; Arla Foods amba, Viby J, Denmark) corre-
sponding to 80 g of fat (68% of energy as saturated fat). 45
g of carbohydrate was added as white wheat bread (Länt-
mann Schulstad A/S, Hvidovre, Denmark) and 45 g of a
protein preparation was added or served with the meal.
The protein sources were cod, whey isolate, gluten and
casein. The 45 g of cod protein (cod meal) corresponded
to 285 g of minced cod filet (Coop torskefilet; Royal
Greenland A/S, Aalborg, Denmark). This was added to the
soup before heating. The spray dried whey isolate (whey
meal) (Lacprodan DI-9224; kindly provided by Arla Foods
Ingredients amb, Viby J, Denmark) was dissolved in
200 ml water and served with the meal. Gluten (gluten
meal) (Gluvital 21000; kindly provided by Cerestar Scandi-
navia A/S, Charlottenlund, Denmark) was mixed into the
soup before heating. Casein (casein meal) was applied as
spray dried calcium caseinate (Miprodan 40; kindly pro-
vided by Arla Foods Ingredients amba, Viby J, Denmark).
Half of the casein was dissolved in water and the other
half was added to the soup before heating. To make the
soup more palatable we added 25 g of sliced raw leek, 1 g
of curry and ½ dice of chicken bouillon. The soup had a
serving temperature of 65°C. The total amount of water in
each meal was 675 ml and the total volume of each meal
did not differ.

Blood analyses
Adiponectin was measured using the B-Bridge Int. human
adiponectin enzyme-linked immunosorbant assay (ELISA)
kit (Cat# K1001-1), (CV: 3.2%). All other inflammatory
markers were assessed using a fixed Bio-Plex Pro Human
Cytokine 27-plex array (Cat# M50-0KCAF0Y) according
to manufacturer’s instructions, (CV: 5-15%) as described
previously [33,41]. Plasma samples were diluted 1:2 and
incubated with anti-cytokine antibody-coupled beads for

30 min at room temperature. Beads were then incubated
with biotinylated detection antibodies for 30 min, before
incubation with Streptavidin-phycoerythrin for 30 min.
Following each incubation step, complexes were washed 3
times in wash buffer using the Bio-Plex Pro Wash Station.
Finally, complexes were resuspended in 125 μl of assay
buffer, and beads were counted on the Bio-Plex 200 sys-
tem (Bio-Rad). Duplicates were performed. Mean fluores-
cence intensity was analyzed and data was given as pg/ml.
The 27-plex array included the following cytokines: Inter-
leukine (IL)-1b, IL-1 receptor antagonist (IL-1ra), IL-2,
IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13,
IL-15, IL-17A, basic fibroblast growth factor (basic FGF),
eotaxin, granulocyte colony stimulating factor (G-CSF),
granulocyte macrophage colony stimulating factor (GM-
CSF), interferon-g (IFN-g), IFN-g induced protein 10 kDa
(IP-10), MCP-1, macrophage inflammatory protein-1a
(MIP-1a), MIP-1b, platelet derived growth factor BB
(PDGF-BB), CCL5/RANTES, Tumor necrosis factor-a
(TNF-a), vascular endothelial growth factor (VEGF).

Statistical analysis and calculations
Comparisons were based on a mixed effects model [42]
(STATA/IC 10.1) using treatment group as fixed vari-
able and participant ID as random variable. All esti-
mates were adjusted for treatment order, baseline
values, gender and waist-to-hip ratio. F-test or Wald test
were applied as appropriate. A P value < 0.05 was con-
sidered statistically significant. Any statistical significant
main effect of meal was followed up by Tukey’s post
hoc correction for pair wise comparison. Whenever data
was not normally distributed, a log transformation was
performed and the statistical analysis was carried out on
the normal distributed log data. Data was given as net
incremental area under the curve (iAUC) 0-240 min.
Net iAUC was calculated using trapezoidal rule. Data
was given as means ± SD in tables and as means ± SE
in graphs unless otherwise stated. When statistical ana-
lyses were performed on log transformed data, results
were given as medians with interquartile ranges. Any
sample with a value below detection limit was omitted
from the statistical analyses. No statistical analyses were
performed on cytokines with more than 9% of samples
below detection limit: IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7,
IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17A,
basic FGF, GM-CSF, MIP-1a and TNF-a.

Results
The 11 obese non-diabetic subjects completed the four
test meals according to protocol. No significant differ-
ences in fasting cytokines concentrations were found
(Table 2). No significant weight changes were found
between first (100.5 kg) and last (100.4 kg) test day.
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CCL5/RANTES
The plasma concentrations of CCL5/RANTES increased
for all meals at 30 min (Figure 1). The average incre-
ment at 30 min was 86%. Towards the end of the

observation period CCL5/RANTES concentrations
decreased towards baseline for all meals. At 240 min
CCL5/RANTES concentration after cod-meal was 52%
above baseline whereas CCL5/RANTES concentration

Table 2 Fasting concentrations and net incremental areas under the curve after 240 min (net iAUC 0-240 min)1 for
inflammatory markers, insulin and triglycerides in 11 (8 women and 3 men) obese non-diabetic subjects in response
to the four test-meals

Cod Whey Gluten Casein

MCP-1

Fasting 22 ± 11 21 ± 7 23 ± 12 21 ± 11

iAUC 0-240 min (pg/ml·240 min) - 826 ± 1255x - 77 ± 1092y -943 ± 925x -469 ± 757xy

CCL5

Fasting 340 ± 238 490 ± 396 490 ± 321 409 ± 297

iAUC 0-240 min (pg/ml·240 min) 50 764 ± 58 218x - 18 510 ± 81 999y 11 235 ± 55 558yz 44 488 ± 37 862xz

IL-1ra

Fasting 68 ± 18 79 ± 39 76 ± 34 66 ± 24

iAUC 0-240 min (pg/ml·240 min) 743 ± 2 871 -1 972 ± 4 005 -1 454 ± 5 068 2 173 ± 4 320

PDGF-bb1

Fasting 40 ± 41 161 ± 260 65 ± 78 110 ± 232

iAUC 0-240 min (pg/ml·240 min) 11 837 (6 285 - 20 952) 4 303 (2 102 - 6 995) 6 660 (4851 - 10 742) 8 604 (6348 - 10 435)

IFN-g

Fasting 25 ± 12 28 ± 25 30 ± 21 28 ± 24

iAUC 0-240 min (pg/ml·240 min) 865 ± 1 610 -1 300 ± 3 747 -791 ± 2 622 397 ± 2 614

Adiponectin

Fasting 1.5 ± 0.5 1.5 ± 0.6 1.5 ± 0.6 1.5 ± 0.5

iAUC 0-240 min (μg/ml·240 min) -7.7 ± 48 -8.5 ± 49 6.3 ± 38 -6.9 ± 36

Eotaxin

Fasting 52 ± 12 53 ± 14 51 ± 14 49 ± 16

iAUC 0-240 min (pg/ml·240 min) - 45 ± 819 601 ± 2237 - 64 ± 686 983 ± 1039

G-CSF

Fasting 11 ± 3 12 ± 6 11 ± 4 12 ± 7

iAUC 0-240 min (pg/ml·240 min) 23 ± 719 -420 ± 1 242 -114 ± 685 -194 ± 955

IP-10

Fasting 579 ± 166 558 ± 109 588 ± 226 542 ± 142

iAUC 0-240 min (pg/ml·240 min) -2 343 ± 24 198 -10 371 ± 19 737 -3 403 ± 21 448 -5 159 ± 10 121

MIP-1b

Fasting 45 ± 16 46 ± 16 44 ± 14 43 ± 15

iAUC 0-240 min (pg/ml·240 min) -908 ± 1 248 -331 ± 1 411 -302 ± 534 -219 ± 428

VEGF

Fasting 7 ± 3 10 ± 6 7 ± 3 8 ± 4

iAUC 0-240 min (pg/ml·240 min) 693 ± 921 270 ± 1 058 233 ± 448 317 ± 419

Insulin

Fasting 65 ± 28 63 ± 33 66 ± 31 62 ± 32

iAUC 0-240 min (pmol/l·240 min) 41 158 ± 11 003x 73 693 ± 28 022y 38 738 ± 10 691x 50 978 ± 21 477x

Triglycerides

Fasting 2.0 ± 1.0 1.8 ± 0.8 1.9 ± 0.7 1.8 ± 0.9

iAUC 0-240 min (mmol/l·240 min) 138 ± 108 122 ± 95 132 ± 95 127 ± 94
1All values are means ± SDs (normal distributions; mixed-effects model, Tukey’s post hoc correction) or medians with interquartile ranges in parentheses (skewed
distribution; mixed-effects model on normal distributed log-transformed data, Tukey’s post hoc correction). Meals: energy-free soup plus 100 g butter and 45 g
carbohydrate consumed with either 45 g cod, 45 g whey isolate, 45 g gluten or 45 g casein. MCP-1: monocyte chemotactic protein-1; CCL5: Chemokine ligand 5;
IL-1ra: interleukin 1 receptor-antagonist; PDGF-bb1: platelet derived growth factor BB; IFN-g: interferon-gamma; G-CSF: granulocyte colony-stimulating factor; IP-
10: interferon-gamma induced protein 10 kDa; MIP-1b: macrophage inflammatory protein 1b; VEGF: vascular endothelial growth factor. Values in a row with
different superscript letters are significantly different, P < 0.05.
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after whey-meal was 39% below baseline. We found a
statistically significant main effect of meal (P = 0.0053).
The iAUC-240 min was lower after whey-meal com-
pared to cod meal and casein meal. The iAUC-240 min
was also lower after gluten meal compared to cod meal
(Table 2). Post hoc analyses did not demonstrate differ-
ences between meals in CCL5/RANTES iAUC-60 min
(P = 0.55). However, a negative correlation was demon-
strated between insulin iAUC-240 min and CCL5/
RANTES iAUC-240 min (r = -0.33; P = 0.04). No post
hoc correlation could be demonstrated between trigly-
cerides and MCP-1 (data not presented).

MCP-1
MCP-1 plasma levels decreased for all meals in the first
30 min (Figure 2). The mean decrement at 30 min was
17%. Towards the end of the observation period MCP-1
levels after whey-meal reached baseline whereas MCP-1
concentrations only slightly increased but remained
below baseline for the three other meals. We found a
statistically significant main effect of meal (P = 0.040).
The overall net suppression of MCP-1 was smaller for
whey-meal compared to cod-meal and gluten-meal
(Table 2). Post hoc analyses did not demonstrate differ-
ences between meals in MCP-1 iAUC-60 min (P =
0.38). However, a post hoc correlation analysis revealed
a positive correlation between insulin iAUC-240 min
and MCP-1 iAUC-240 min (r = 0.39; P = 0.01). No post
hoc correlation could be demonstrated between trigly-
cerides and MCP-1 (data not presented).

Other cytokines
No significant differences between meals were observed
for IFN-g, adiponectin, eotaxin, G-CSF, IP-10, MIP-1b,
PDGF-BB, IL-1ra and VEGF, respectively (Table 2).

Discussion
We have demonstrated acute differential effects of dietary
protein sources on postprandial low-grade inflammation
after a high-fat meal in obese non-diabetic subjects. Of
particular interest we observed that MCP-1 and CCL5/
RANTES displayed acute postprandial responses to the
test meals. MCP-1 was initially suppressed and CCL5/
RANTES initially increased after consumption of the test
meals. For both cytokines no significant differences
between meals were evident at peak values after 60 min.
However, whey-meal was associated with a different over-
all response after 240 min compared to the other protein
meals. MCP-1 was suppressed to a smaller extent after
whey-meal compared to cod-meal and gluten-meal.
CCL5/RANTES iAUC-240 min was smaller after the
whey-meal compared to the other meals - in particular
compared to cod-meal and casein-meal.
Several studies have demonstrated postprandial adher-

ence of Apo B to monocytes and activation of monocytes
in response to an oral fat loading test in healthy subjects
[19,20]. The activation of monocytes is important for the
endothelial adhesion of monocytes and subsequent trans-
migration across the endothelial wall where the monocytes
differentiate into macrophages [43]. However, this process
is further enhanced when oxidized LDL and chylomicron
remnant particles are taken up by residing macrophages

Figure 1 The plot show mean (+SEM) responses for CCL5/
RANTES in plasma in the 4 h postprandial period after the four
meals consumed by 11 obese non-diabetic subjects. Meals
consisted of an energy-free soup plus 80 g fat (from butter) and
45 g carbohydrate consumed with either 45 g cod protein, 45 g
whey protein, 45 g gluten or 45 g casein.

Figure 2 The plot show mean (+SEM) responses for MCP-1 in
plasma in the 4 h postprandial period after the four meals
consumed by 11 obese non-diabetic subjects. Meals consisted of
an energy-free soup plus 80 g fat (from butter) and 45 g
carbohydrate consumed with either 45 g cod protein, 45 g whey
protein, 45 g gluten or 45 g casein.
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inside the vessel wall. These macrophages activate the
endothelium to produce MCP-1 which in mice resulted in
further localized recruitment and tissue infiltration of
monocytes [44]. In the endothelial wall the phagocytosis
of oxidized lipoproteins by macrophages precedes the
development of atherosclerotic plaques. Consequently any
means to reduce endothelial adhesion of monocytes may
reduce the progression of atherosclerotic plaques.
The CCL5/RANTES response was significantly smaller

after whey meal compared to the cod and casein meals.
Krohn et al [45] demonstrated reduction of neointimal
thickening and macrophage infiltration in CCL5/RANTES
knock-out mice. These findings are consistent with the
CCL5/RANTES antagonist study of Braunersreuther et al
[46] who also demonstrated that deficiency of the CCL5/
RANTES receptor protects Apo E -/- mice from diet
induced atherosclerosis [47]. The finding of up-regulated
CCL5/RANTES in human atherosclerotic plaques [48] cor-
roborates with the association demonstrated between
CCL5/RANTES and unstable angina pectoris [49] and
myocardial infarction [50]. While CCL5/RANTES is
thought to be crucial to monocyte recruitment during
development of atherosclerosis [51] high density lipopro-
tein may partly cause its cardioprotective effect by reducing
circulating levels of CCL5/RANTES [52]. Furthermore,
high levels of CCL5/RANTES had a positive correlation to
the development of T2DM in humans [53].
In the present study cod protein and gluten induced sig-

nificantly lower concentrations of MCP-1 compared to
whey protein. The mechanism of action is not known.
However, in the cod-meal the total quantity of n-3 fatty
acids was 752 mg, which may contribute to the anti-
inflammatory effects via interaction with the pro-inflam-
matory transcription factor i.e. nuclear factor kappa beta
(NF-�B) [54,55]. However, since gluten does not contain
any n-3 fatty acids it may be speculated that cod and glu-
ten do not share particular MCP-1 lowering properties.
MCP-1 may be higher after whey meal due to whey speci-
fic properties e.g. higher insulin response as discussed
later.
Research on the immunomodulatory properties of milk

proteins has traditionally been focusing on the antimicro-
bial effects of T-cells, macrophages and the innate
immune response [56]. The availability of immunomodu-
latory peptides is not solely depending on the dietary
composition but also varies depending on the specific
enzymatic digestion of milk components in the intestinal
tractus [57]. Aihara et al [58] demonstrated that the
casein and whey derived tri-peptide valyl-prolyl-proline
modulates monocyte adhesion to inflamed endothelia in
vitro via attenuation of the pro-inflammatory c-Jun N-
terminal kinases (JNK) pathway. Interestingly, the casein
subunit “a s1” is expressed by monocytes in vitro [59]
promoting a pro-inflammatory cytokine response.

Furthermore, Zemel et al [36] demonstrated reduced
levels of MCP-1 after a dairy rich diet but not after a soy
rich diet in a 28 day intervention period. These observa-
tions support that circulating peptides from a dairy pro-
duct rich diet may at least in part be responsible for the
differential cytokine responses observed after the four
meals in the present study.
Whey protein reduces postprandial lipaemia more

than cod, gluten and casein [39,40]. However, we could
not demonstrate any correlation between postprandial
lipaemia and the inflammatory markers.
Euglycemic hyperinsulineamia has been found to inhi-

bit NF-�B and reduce concentrations of MCP-1 in obese
subjects after 2 h and 4 h of insulin infusion [60,61]. As
whey protein is more insulinotropic than cod protein,
gluten and casein this mechanism would imply a larger
suppression of MCP-1 after the whey meal compared to
the other meals. However, we have demonstrated a posi-
tive correlation between postprandial insulin and MCP-1
as well as a negative correlation between postprandial
insulin and CCL5/RANTES. This is in accordance with
our findings that the MCP-1 iAUC-240 min for the whey
meal was larger compared to the other meals and that
the CCL5/RANTES iAUC-240 min was smaller after
whey meal. Other studies have demonstrated anti-inflam-
matory properties of insulin infusion on both MCP-1 and
CCL5/RANTES [62]. We cannot explain the opposing
effects of whey meal on MCP-1 and CCL5/RANTES in
our study.

Conclusion
MCP-1 and CCL5/RANTES are risk markers closely
associated to obesity related risk factors, i.e. dyslipidae-
mia and insulin resistance. Long-term studies are
needed to establish the potentially clinical effect of the
impact of dietary protein on postprandial low-grade
inflammation. In the present study we demonstrated an
inverse relationship between concentrations of postpran-
dial MCP-1 and CCL5/RANTES after the cod, whey iso-
late, gluten and casein meals.
This study is an exploratory pilot study indicating dif-

ferential effects of dietary protein sources on postpran-
dial inflammatory cytokines. Inclusion of different
protein rich foods may enhance or diminish the inflam-
matory properties of a given diet. As circulating concen-
trations of MCP-1 and CCL5/RANTES are profoundly
affected in the postprandial period, future research on
postprandial low-grade inflammation should include
these key inflammatory markers.
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macrophage colony stimulating factor; iAUC: incremental area under the
curve; IFN-γ: interferon-γ; IL: interleukine; IL-1ra: IL-1 receptor antagonist; IP-
10: interferon-γ induced protein 10 kDa; JNK: c-Jun N-terminal kinases; LDL:
low density lipoproteins; MCP-1: monocyte chemotactic protein-1; MIP-1α:
macrophage inflammatory protein-1α; NF-κB: nuclear factor kappa beta;
PDGF-BB: platelet derived growth factor BB; PUFA: poly unsaturated fatty
acids; RANTES: regulated upon activation; normal T-cell expressed; and
secreted; T2DM: type 2 diabetes; TNF-α: tumor necrosis factor-α; VEGF:
vascular endothelial growth factor; WAT: white adipose tissue.
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